SS 2010 Dr. Ch. Bock

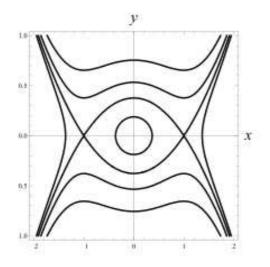
Elemente der Analysis III

Übungsblatt 2

Aufgabe 1. Bestimme alle lokalen Extrema der mit ihren Niveaulinien

$$\{(x,y) \in \mathbb{R}^2 \mid f(x,y) = c\}, \ c \in \mathbb{R},$$

dargestellten Funktin $f \colon \mathbb{R}^2 \to \mathbb{R}, \, (x,y) \mapsto 2x^2 - x^4 + 7y^2.$



Definition. Seien $n \in \mathbb{N}_+$ und M eine offene Teilmenge von \mathbb{R}^n .

- (i) Eine C^{∞} -Abbildung $X : M \to \mathbb{R}^n$, die jedem $p \in M$ einen Vektor $X(p) \in \mathbb{R}^n$ zuordnet, heißt ein Vektorfeld auf M.
- (ii) Ist $X=(X_1,\ldots,X_n)\colon M\to\mathbb{R}^n$ ein Vektorfeld auf M, so heißt

$$\operatorname{div} X \colon M \longrightarrow \mathbb{R}, \ p \longmapsto \operatorname{div}_p X := \sum_{i=1}^n \frac{\partial X_i}{\partial x_i}(p),$$

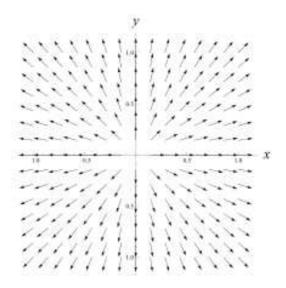
die $Divergenz \ von \ X$.

Die Divergenz ist also die Summe der Diagonalelemente der Jacobi-Matrix von X.

bitte wenden

Aufgabe 2. Berechne die Divergenz div X des abgebildeten Vektorfeldes

$$X \colon \mathbb{R}^2 \setminus \{0\} \longrightarrow \mathbb{R}^2, \ (x,y) \longmapsto \frac{(x,y)}{\sqrt{x^2 + y^2}}.$$



Aufgabe 3. Berechne ohne Verwendung eines Taschenrechners näherungsweise die reelle Zahl $2,02^{3,01}$. Differenziere hierzu

$$f \colon \mathbb{R}_+ \times \mathbb{R} \longrightarrow \mathbb{R}, \ (x,y) \longmapsto x^y$$

im Punkte $(x_0, y_0) = (2, 3)$ und approximiere f(x, y) durch $f(x_0, y_0) + \mathrm{d}_{(x_0, y_0)} f(x - x_0, y - y_0)$. Tip: Verwende $x^y = \exp(y \ln(x))$ und $\ln(2) \approx 0, 7$.

Aufgabe 4. Berechne die partiellen Ableitungen der folgenden Funktionen:

- (i) $f: \mathbb{R}_+ \times \mathbb{R}_+ \longrightarrow \mathbb{R}, (x, y) \longmapsto \frac{1}{2} \ln(x^2 + y^2),$
- (ii) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}, (x,y) \longmapsto \exp(xy)\sin(x^2+y).$

Abgabe: Freitag, den 21.05.2010 in der Vorlesung