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Vorwort

Bis in die siebziger Jahre war nicht bekannt, ob es kompakte symplektische Man-
nigfaltigkeiten gibt, die keine K&hler-Struktur tragen. Das erste Beispiel einer sol-
chen Mannigfaltigkeit wurde 1976 von W. P. Thurston angegeben. Er konstruierte
in [73] eine symplektische vier-dimensionale Nilmannigfaltigkeit (d.i. ein kompak-
ter Quotient einer zusammenhéngenden und einfach-zusammenhéngenden nilpo-
tenten Liegruppe nach einer diskreten Untergruppe) mit erster Betti-Zahl b, = 3.
Aus topologischen Griinden kann diese Mannigfaltigkeit nicht Kahlersch sein,
denn die Betti-Zahlen by; 11 von ungeradem Grad sind fiir Kdhler-Mannigfaltig-
keiten gerade. L. A. Cordero, M. Ferndndez und A. Gray haben in den achtziger
Jahren weitere Beispiele angegeben (vgl. [13]), die aber teilweise gerade Betti-
Zahlen haben. Die Autoren weisen nach, daf ihre Beispiele nicht formal sind.
Hieraus folgt dann, daf sie auch nicht Kéahlersch sein konnen, denn P. Deligne,
P. Griffiths, J. Morgan und D. Sullivan haben in [16] bewiesen, daf Formalitit
notwendig fiir die Existenz von Kahler-Strukturen ist.

Formalitat ist eine wichtige Eigenschaft eines Raumes, die es ermoglicht,
rational-homotopische Informationen aus der Kohomolgie-Algebra zu gewinnen.
Die o.g. Arbeit [13] zeigt insbesondere, daf symplektische Mannigfaltigkeiten i.a.
nicht formal sind. Auferdem stellen Methoden der rationalen Homotopie Mog-
lichkeiten bereit, kompakte symplektische nicht-Kéhlersche Mannigfaltigkeiten zu
konstruieren.

Es sei angemerkt, dafs es formale symplektische Mannigfaltigkeiten gibt, die
den Kohomologietyp einer Kéahler-Mannigfaltigkeit haben und trotzdem nicht
Kéhlersch sind. Ein Beispiel hierfiir haben M. Ferndndez und A. Gray [25] gege-
ben.

Ich gebe im ersten Kapitel dieser Arbeit einen kurzen Uberblick iiber die Theo-
rie der minimalen Modelle, insoweit sie zur Definition des Begriffes der Formalitét
notwendig ist.

M. Fernédndez und V. Munoz haben in dieser Dekade eine Arbeit |28] {iber die
Geographie formaler Mannigfaltigkeiten geschrieben. In Abhingigkeit der Dimen-
sion und der ersten Betti-Zahl b; sagen sie genau, wann eine geschlossene formale
Mannigfaltigkeit existiert. Im zweiten Kapitel versuche ich, dieselbe Fragestel-
lung fiir Mannigfaltigkeiten, die zusétzlich eine symplektische Struktur tragen,
zu klaren. Dies ist zundchst nur mit Ausnahme des sechs-dimensionalen Falles
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mit b; = 1 gelungen. Ferner kann man auch eine Aussage iiber die Geographie
formaler geschlossener Kontaktmannigfaltigkeiten mit erster Betti-Zahl grofer
oder gleich zwei herleiten. Dies stelle ich im zweiten Kapitel ebenfalls dar.

In der Hoffnung, den offen geblieben Fall des sechs-dimensionalen Raumes mit
by = 1 beantworten zu konnen, habe ich mich dem Studium von Solvmannigfal-
tigkeiten zugewendet, welches den Inhalt des dritten Kapitels bildet.

Nilmannigfaltigkeiten stellen eine reichhaltige Quelle symplektischer Mannig-
faltigkeiten, die nicht Kahlersch sind, dar. Tatséchlich ist eine Nilmannigfaltigkeit
genau dann formal, wenn sie ein Torus ist. (Und genau in diesem Fall trigt sie
auch eine Kéahler-Struktur.) M. a. W. ist jede symplektische nicht-torale Nil-
mannigfaltigkeit nicht formal. Nilmannigfaltigkeiten helfen bei der Suche nach
einer Mannigfaltigkeit mit b; = 1 jedoch nicht weiter, da b, fiir sie immer gro-
fser als eins ist. Der Begriff der Solvmannigfaltigkeit ist eine Verallgemeinerung
desjenigen der Nilmannigfaltigkeit. Eine Solvmannigfaltigkeit ist ein kompakter
Quotient aus einer zusammenhédngenden und einfach-zusammenhingenden auf-
l6sbaren Liegruppe nach einer diskreten Untergruppe, und solche konnen auch
erste Betti-Zahl gleich eins haben. Es erschien mir daher natiirlich, unter den
Solvmannigfaltigkeiten nach einem Beispiel einer nicht-formalen symplektischen
sechs-Mannigfaltigkeit mit by = 1 zu suchen.

In diesem Zusammenhang habe ich dann auch versucht, die bisher bekann-
te Klassifikation niedrig-dimensionaler Solvmannigfaltigkeiten bis zur Dimension
sechs zu erweitern und den Aspekt der Formaltitit hinzuzufiigen.

Im sechs-dimensionalen Fall habe ich mich auf die Betrachtung von symplek-
tischen Rdumen beschrankt und unter diesen eine nicht-formale Mannigfaltigkeit
mit b; = 1 gefunden.

Neben der Formalitdt und der Tatsache, dals die Betti-Zahlen ungeraden
Grades gerade sind, erfiillen kompakte Kahler-Mannigfaltigkeiten die sog. star-
ke Lefschetz-Bedingung. Bezeichnet w eine symplektische Form auf einer 2n-
dimensionalen kompakten Mannigfaltigkeit M, so lautet die starke Lefschetz-
Bedingung, daf das Cup-Produkt mit [w]* fiir alle & € {0,...,n — 1} einen
Isomorphismus H" *(M,R) — H""*(M,R) definiert.

Zum Abschluf von Kapitel 3 gehe ich der Frage nach, welche Kombinationen
der drei genannten Eigenschaften fiir symplektische Solvmannigfaltigkeiten erfiillt
bzw. nicht erfiillt sein kénnen und beantworte zwei Fragen, die in der Arbeit [47]
von R. Ibanez, Y. Rudiak, A. Tralle und L. Ugarte offen geblieben waren.

St. Halperin nennt in [37| ein Ergebnis, das die Berechnung der hoheren Ho-
motopiegruppen einer gewissen Klasse von Rdumen, die die der nilpotenten um-
schliefst, mittels der Theorie der minimalen Modelle ermoglicht. Den Nachweis
dessen, der in [37] nicht dargestellt ist, werde ich im vierten Kaitel dieser Arbeit
erbringen.

Sehr herzlich danke ich Herrn Prof. H. Geiges fiir die Moglichkeit, diese Arbeit
unter seiner Anleitung zu schreiben. Ich habe von vielen anregenden Gesprachen
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und wertvollen Hinweisen, die mir halfen, neue Aspekte zu beriicksichtigen, pro-
fitiert. Seine Unterstiitzung, die Moglichkeit, ihm jederzeit Fragen zu stellen, und
der gewéhrte Freiraum bei der Erstellung dieser Arbeit haben einen mafsgeblichen
Anteil an ihr.

Mein weiterer Dank gilt meinem Diplomvater Herrn Prof. Dr. W. Henke, der
mich die Mathematik gelehrt und die Begeisterung fiir sie in mir geweckt hat.

Koln, im Dezember 2008 Christoph Bock
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Abstract

Topology of symplectic manifolds is nowadays a subject of intensive development.
The simplest examples of such manifolds are Kahler manifolds and an important
property of the latter is their formality. Thus, a possible way of constructing
symplectic manifolds with no Kahler structure is to find such ones which are not
formal.

M. Fernandez und V. Munoz considered in [28] the question of the geography
of non-formal compact manifolds. Given (m,b;) € Ny x N, they showed whether
or not there are m-dimensional non-formal compact manifolds with first Betti
number b;.

The aim of this thesis is to answer the same question for compact symplectic
manifolds. After setting the scene in the first chapter, this is done in the second
one — except for the six-dimensional case with b; = 1. The third chapter deals
with solvmanifolds, especially with those of dimension less or equal to six, because
I hoped to find the missing example among them, and in fact there is a six-
dimensional symplectic solvmanifolds which is non-formal and satisfies b; = 1.

Besides formality, compact Kéhler manifolds have even odd-degree Betti num-
bers and they satisfy the so-called Hard Lefschetz condition. To end Chapter 3, [
deal with relations between this three properties for symplectic solvmanifolds. I
am able to give an answer to two questions that had remained open in the article
[47] of R. Ibafiez, Y. Rudiak, A. Tralle and L. Ugarte.

Furthermore, in the last chapter I prove a result that allows an easy compu-
tation of the higher homotopy groups of a class of spaces containing all nilpotent
ones. Without giving a proof, St. Halperin stated it in the introduction of [37].

I would like to express my sincere gratitude to my supervisor Prof. H. Geiges
for giving me the possibility to participate in his group and to write this thesis
under his guidance. [ have profited greatly from his suggestions and various con-
versations with him. Without his kind support this dissertation would not have
been written.

Moreover, I wish to thank Prof. Dr. W. Henke who was the supervisor of my
diploma thesis. He taught me mathematics and woke up the enthusiasm for it.

Koln, December 2008 Christoph Bock
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Chapter 1

Introduction

The aim of this chapter is to introduce formal manifolds and to quote some of their
properties. (Throughout this thesis a manifold is assumed to have no boundary,
i.e. a compact manifold is the same as a closed manifold.) Given a manifold
M, one can consider the complex of its differential forms (2(M),d), which has
the structure of a so-called differential graded algebra. Such differential graded
algebras are the main objects of rational homotopy theory, and the definition
of the formality of M will purely depend on rational homotopic properties of
(M), d).

The idea of rational homotopy is to ignore the torsion in standard homotopy
theory. Sullivan [71]| showed in the 1960s that not only the simplicial homology
H,(X,Z) and the higher homotopy groups m;(X), i > 1, of a simply-connected
space X can be localised to H.(X,Q) and m;(X) ® Q. It is also possible to
geometrically localise the space X to a space Xy via a continuous map X — X
which induces isomorphisms H,(X,Q) — H.(Xy,Z) and m;(X) ® Q — m;(Xo).
The rational homotopy type of X is then defined as the weak homotopy type of
Xo. A principal feature of rational homotopy theory, as developed by Quillen
[65], is that the geometric localisation Xy can be understood within an entirely
algebraic category. This led to Sullivan’s choice [72| of a particular algebraic
category that models exactly the rational homotopy type of a space. It is to this
category — the category of minimal differential graded algebras — that we turn
now.

1.1 Differential graded algebras and formality

Let K be a field of characteristic zero. A differential graded algebra (DGA) is a
graded K-algebra A = @,y A’ together with a K-linear map d: A — A such
that d(A*) € A" and the following conditions are satisfied:

(i) The K-algebra structure of A is given by an inclusion K < A°.

1



2 CHAPTER 1. INTRODUCTION

(ii) The multiplication is graded commutative, i.e. for a € A* and b € A’ one
hasa-b=(=1)"7b-a € A,

(iii) The Leibniz rule holds: V,c4:Vipea d(a-b) = d(a) - b+ (—1)'a - d(b)
(iv) The map d is a differential, i.e. d* = 0.

Further, we define |a| := i for a € A",
The i-th cohomology of a DGA (A, d) is the algebra

;  ker(d: A" — A
H'(4,d) = im(d: A1 — Af)°

If (B,dg) is another DGA, then a K-linear map f: A — B is called mor-
phism if f(AY) C BY, f is multiplicative, and dg o f = f o d4. Obviously, any
such f induces a homomorphism f*: H*(A,ds) — H*(B,dg). A morphism of
differential graded algebras inducing an isomorphism on cohomology is called
quasi-isomorphism.

Definition 1.1.1. A DGA (M, d) is said to be minimal if

(i) there is a graded vector space V = (@iem Vi) = Span{a; | k € I} with
homogeneous elements ax, which we call the generators,

(i) M=AV,

(iii) the index set I is well ordered, such that k¥ < [ = |ax| < |a| and the
expression for day contains only generators a; with [ < k.

We shall say that (M,d) is a minimal model for a differential graded al-
gebra (A,d,) if (M,d) is minimal and there is a quasi-isomorphism of DGAs
p: (M,d) = (A,da), i.e. p induces an isomorphism p*: H*(M,d) — H*(A,d,)
on cohomology.

The importance of minimal models is reflected by the following theorem, which
is taken from Sullivan’s work |72, Section 5.

Theorem 1.1.2. A differential graded algebra (A, da) with H°(A,ds) = K pos-
sesses a minimal model. It 1s unique up to isomorphism of differential graded
algebras.

We quote the existence-part of Sullivan’s proof, which gives an explicit con-
struction of the minimal model. Whenever we are going to construct such a
model for a given algebra in this thesis, we will do it as we do it in this proof.

Proof of the existence. We need the following algebraic operations to “add”
resp. “kill” cohomology.
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Let (M, d) be a DGA. We “add” cohomology by choosing a new generator z
and setting

M=Me \@), du=d, da)=0,

and “kill” a cohomology class [z] € H¥(M,d) by choosing a new generator y of
degree k — 1 and setting

M=Me N\), du=d dy) =z

Note that z is a polynomial in the generators of M.

Now, let (A,d4) a DGA with H°(A,d4) = K. We set M, :=K, dy := 0 and
po(x) = .

Suppose now py: (My,di) — (A, d4) has been constructed so that py induces
isomorphisms on cohomology in degrees < k and a monomorphism in degree
(k+1).

“Add” cohomology in degree (k + 1) to get a morphism of differential graded
algebras pui1),0: (Mk11),0, dk+1),0) — (A, da) which induces an isomorphism
pfﬂl)’o on cohomology in degrees < (k+ 1). Now, we want to make the induced
map pj,, 1), injective on cohomology in degree (k +2) .

We “kill” the kernel on cohomology in degree (k+2) (by non-closed generators
of degree (k+1)) and define ppi1)1: (Magiy1, dgsny,1) — (A, da) accordingly.
If there are generators of degree one in (M 41,0, d(k+1),0) it is possible that this
killing process generates new kernel on cohomology in degree (k + 2). Therefore,
we may have to “kill” the kernel in degree (k + 2) repeatedly.

We end up with a morphism pgis1)00: (Mkt1),005 A(kt1),00) — (A, da) which
induces isomorphisms on cohomology in degrees < (k+ 1) and a monomorphism
in degree (k +2). Set pri1 = plrt1),00 a0d (Mpy1, diy1) = (Mpg1),00, d(k+1),00)-

Inductively we get the minimal model p: (M, d) — (A, da). O

A minimal model (Myy,d) of a connected smooth manifold M is a minimal
model for the de Rahm complex (2(M),d) of differential forms on M. Note that
this implies that (M, d) is an algebra over R. The last theorem implies that
every connected smooth manifold possesses a minimal model which is unique up
to isomorphism of differential graded algebras.

For a certain class of spaces that includes all nilpotent (and hence all simply-
connected) spaces, we can read off the non-torsion part of the homotopy from the
generators of the minimal model. We point the interested reader to Chapter 4.

Except in Chapter 4, we are from now on just considering differential graded
algebras over the field K = R.

For the remainder of this section, we deal with the notion of formality. En-
dowed with the trivial differential, the cohomology of a minimal DGA is a DGA
itself, and therefore it also possesses a minimal model. In general, these two
minimal models need not to be isomorphic.
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A minimal differential graded algebra (M,d) is called formal if there is a
morphism of differential graded algebras

v: (M,d) — (H*(M,d),dg = 0)

that induces the identity on cohomology.
This means that (M, d) and (H*(M,d),dy = 0) share their minimal model.
The following theorem gives an equivalent characterisation.

Theorem 1.1.3 (|63, Theorem 1.3.1|). A minimal model (M,d) is formal if
and only if we can write M = \V and the space V' decomposes as a direct sum
V =C&®N withd(C) =0, d is injective on N, and such that every closed element
in the ideal I(N) generated by N in \'V is exact. O

This allows us to give a weaker version of the notion of formality.

Definition 1.1.4. A minimal model (M, d) is called s-formal, s € N, if we can
write M = AV and for each ¢ < s the space V' generated by generators of
degree ¢ decomposes as a direct sum V' = C* @ N' with d(C") = 0, d is injective
on N and such that every closed element in the ideal I(€D,., N*) generated by
@D, N'in A\ (B, V') is exact in A V.

Obviously, formality implies s-formality for every s.
The following theorem is an immediate consequence of the last definition.

Theorem 1.1.5. Let (M, d) be a minimal model, where M = AV, V=C&N
with d(C) = 0 and d is injective on N.

Assume that there exist r,s € Ny, n € N" and v € )\ (@KS Vi) such that
holds -

Veeor (n+¢)x is closed and not exact.

Then (M, d) is not max{r, s}-formal. O

A connected smooth manifold is called formal (resp. s-formal) if its minimal
model is formal (resp. s-formal).

Example ([63, p. 20]). Any compact Riemannian symmetric space is formal. [J

We end this section with some results that allow an easier detection of for-
mality resp. non-formality. The next theorem shows the reason for defining s-
formality: in certain cases s-formality is sufficient for a manifold to be formal.

Theorem 1.1.6 (|27, Theorem 3.1]). Let M be a connected and orientable com-
pact smooth manifold of dimension 2n or (2n — 1).
Then M is formal if and only if it is (n — 1)-formal. O
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Example (|27, Corollary 3.3]).

(i) Every connected and simply-connected compact smooth manifold is 2-for-
mal.

ii) Every connected and simply-connected compact smooth manifold of dimen-
y y
sion seven or eight is formal if and only if it is 3-formal. U

Proposition 1.1.7 (|27, Lemma 2.11]). Let M, My be connected smooth mani-
folds. They are both formal (resp. s-formal) if and only if My x My is formal
(resp. s-formal). O

1.2 Massey products

An important tool for detecting non-formality is the concept of Massey products:
As we shall see below, the triviality of the Massey products is necessary for
formality.

Let (A, d) be a differential graded algebra.

(i) Let a; € HPi(A,d), p; > 0, 1 <14 < 3, satisfying a; - a;41 = 0 for j = 1,2.
Take elements «; of A with a; = [o;] and write o aj 11 = d§; j 11 for j = 1,2.
The (triple-)Massey product (ay, as, ag) of the classes a; is defined as

]-[101-1-172-i-103—1(A7 d)
ay - Hp2rs=1(A d) + HPtp2=1( A d) - as’

[y - &g+ (1) e 5 - ) €

(ii) Now, let k& > 4 and a; € HP(A,d), p, > 0, 1 < i < k, such that
(ay,...,ax_1) and (ag,...,a;) are defined and vanish simultaneously, i.e.
there are elements & j of A, 1 <i<j <k, (i,j) # (1, k), such that

j—1
a; = [§] and d&; = Zfi,z RIISRE (1.1)
I=i

where £ = (=1)Fl¢. The Massey product (ay,...,ax) of the classes a; is
defined as the set {[>1 &, - &y14] | & satisfies (1.1)}. This is a subset
of HPt-Hpe=(k=2)( A ).

We say that (ay,...,ay) vanishes if 0 € (ay, ..., az).

Remark. The definition of the triple-Massey product in (i) as an element of a
quotient space is well defined, see e.g. [63, Section 1.6].

The next two lemmata show the relation between formality (resp. s-formality)
and Massey products.
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Lemma 1.2.1 (|63, Theorem 1.6.5|). For any formal minimal differential graded
algebra all Massey products vanish. U

Lemma 1.2.2 (|27, Lemma 2.9]). Let (A, d) be an s-formal minimal differential
graded algebra. Suppose that there are cohomology classes a; € HP (A, d), p; > 0,
1 <i <k, such that {ay,...,ax) is defined. If pr + ...+ pr_1 < s+ k—2 and
pot ...+ <s+k—2, then (ay,...,a) vanishes. O

In [29], Fernandez and Munoz introduce a different type of Massey product,
called G-Massey product:

Definition 1.2.3. Let (A,d) be a DGA and let a, by, by, b3 € H*(A, d) satisfying
a-b; =0 for i = 1,2,3. Take choices of representatives a = [a],b; = [3;] and
a- f; =d& for i = 1,2,3. Then the G-Massey product {a; by, by, bs) is defined as
(€16 B3+ & &3 Br+E& -6 - Bo] in
H8(A,d)
(b1, a,by) - H3(A,d) + (b, a,bs) - H3(A,d) + (by,a,b3) - H3(A,d)

Lemma 1.2.4 (|29, Proposition 3.2|). If a minimal differential graded algebra is
formal, then every G-Massey product vanishes. U

Corollary 1.2.5. If the de Rahm complex (Q(M),d) of a smooth manifold M
possesses a non-vanishing Massey or G-Massey product, then M is not formal.

If there are cohomology classes a; € HP(M,R) (p; > 0, 1 < i < k) with
Pt ot <s+k—2and py+...+pp < s+ k—2 such that {(ay,...,a)
does not vanish, then M 1is not s-formal.

Proof. This holds since a minimal model p: (M, d) — (2(M),d) induces
an isomorphism on cohomology. U

1.3 Geography of non-formal manifolds

Fernandez and Mufioz considered in [28] the geography of non-formal compact
manifolds. This means they examined whether there are non-formal compact
manifolds of a given dimension with a given first Betti number. They obtained
the following theorem:

Theorem 1.3.1. Given m € N, and b € N, there are compact oriented m-
dimensional smooth manifolds with by = b which are non-formal if and only if
one of the following conditions holds:

(i) m >3 and b > 2,

(i) m >5 and b =1,

i) m>7 and b= 0. O
(i1i)
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A natural question to ask is when there are non-formal compact symplectic or
contact manifolds as in the last theorem. Parts of this question will be answered
in the next chapter.
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Chapter 2

Geography of Non-Formal
Symplectic and Contact Manifolds

In this chapter we want to construct non-formal symplectic and contact m-
manifolds. If b denotes the first Betti number, then the pair (m,b) must satisfy
one of the conditions (i), (ii) or (iii) of Theorem 1.3.1. Unfortunately, we shall not
find examples for all possible pairs (m,b). But we will be able to prove that the
geography of even-dimensional compact manifolds coincides with that of compact
symplectic manifolds.

2.1 Symplectic, Kihler and Lefschetz manifolds

The main examples of formal spaces are Kahler manifolds. By definition, a K&hler
manifold possesses a Riemannian, a symplectic and a complex structure that are
compatible in a sense we are going to explain now.

Recall that a symplectic manifold is a pair (M,w), where M is a (2n)-dimen-
sional smooth manifold and w € Q*(M) is a closed 2-form on M such that w is
non-degenerate, i.e. w; # 0 for all p € M.

Definition 2.1.1.

(i) An almost complex structure on an even-dimensional smooth manifold M
is a complex structure J on the tangent bundle T'M.

(i) Let M, J be as in (i) and w € Q*(M) a non-degenerate 2-form on M. The
2-form w is called compatible with J if the bilinear form (...,...) given by

Voer Yower,m (v, w) = w(v, Jw)

defines a Riemannian metric on M.
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(iii) An almost complex structure J on M as in (i) is called integrable if there
exists an atlas Ay, on M such that

vueAM vaDomain(u) dpu ) Jp = J() e} dPUI TpM — Rzn,

0 -Id
Jo_(Id 0 )

J is called complex structure for M.

where

(iv) A Kdahler manifold is a symplectic manifold (M, w) with a complex structure
J on M such that w is compatible with .J.

If one wants to show that a given almost complex structure is not integrable,
it may be hard to disprove the condition (iii) of the last definition. But in [60],
Newlander and Nirenberg proved their famous result that an almost complex
structure J on a smooth manifold M is integrable if and only if N; = 0, where
the Nijenhuis tensor Ny is defined as

N;(X,Y)=[JX,JY] - JJX, Y] - JX,JY] - [X,Y]
for all vector fields X,Y on M.

For a time, it was not clear whether every symplectic manifold was not in fact
Kéhlerian. Meanwhile, many examples of non-Kéahlerian symplectic manifolds are
known. The first such was given by Thurston in 1976 — the so-called Kodaira-
Thurston manifold, see [73].

The difficulty to prove non-existence of any Kahler structure is obvious. Nowa-
days, two easily verifiable necessary conditions for Kéhler manifolds are known.
First, we have the main theorem from the work |16] of Deligne, Griffiths, Morgan
and Sullivan.

Theorem 2.1.2 (|16, p. 270|). Compact Kihler manifolds are formal. O

In order to prove that his manifold is not Kéahlerian, Thurston used another
method. His manifold has first Betti number equal to three and the Hodge
decomposition for Kéahler manifolds implies that its odd degree Betti numbers
have to be even, see e.g. |36, pp. 116 and 117]. This is even satisfied for every
Hard Lefschetz manifold.

We say that a symplectic manifold (M?",w) is Lefschetz if the homomorphism

L¥:  HH(M,R) — H"(M,R)
[a] — [ A W]

is surjective for k = n — 1. If L* is surjective for k € {0,...,n — 1}, then (M,w)
is called Hard Lefschetz.
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Note that for compact M the surjectivity of L* implies its injectivity.

Obviously, the Lefschetz property depends on the choice of the symplectic
form. It may be possible that a smooth manifold M possesses two symplectic
forms wq,wy such that (M, w;) is Lefschetz and (M, ws) not. But as mentioned
above, the existence of such an w; has the following consequence that is purely
topological.

Theorem 2.1.3. The odd degree Betti numbers of a Hard Lefschetz manifold are
even.

Proof. Let (M?",w) be a symplectic manifold satisfying the Lefschetz prop-
erty. We us the same idea as in |36, p. 123|. For each ¢ € {0,...,n — 1} one has
a non-degenerated skew-symmetric bilinear form

H2%(M,R) x H*'(M,R) —s R,
([, [81) — JaAB AW
i.e. H**1(M,R) must be even-dimensional. O

Obviously, this also proves the next corollary.
Corollary 2.1.4. The first Betti number of a Lefschetz manifold is even. U

Finally, the following shows that the statement of the last theorem holds for
Kéhler manifolds:

Theorem 2.1.5 (|36, p. 122|). Compact Kihler manifolds are Hard Lefschetz. [
The aim of the next sections is to prove the following theorems:

Theorem 2.1.6. For all m € 2N, m > 4 and b € N, b > 2, there are compact
m-dimensional symplectic manifolds with by = b which are non-formal.

Theorem 2.1.7. For all m € 2N, m > 6, there are compact m-dimensional
symplectic manifolds with by = 1 which are non-formal.

Theorem 2.1.8. For all m € 2N, m > 8, there are simply-connected compact
m-dimensional symplectic manifolds which are non-formal.

These three theorems and Theorem 1.3.1 imply:
Theorem 2.1.9. Let (m,b) € 2N, xN. If there is a non-formal compact oriented

m-dimensional manifold with by = b, there is also a symplectic manifold with these
properties. O
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2.2 Donaldson submanifolds

Our examples of non-formal symplectic manifolds will be constructed in a similar
way as in the article |27] of Fernandez and Mufioz. The examples will be Don-
aldson submanifolds of non-formal symplectic manifolds. Therefore, we quote in
this section parts of [27].

Note, for the remainder of the chapter we denote the de Rham cohomology
of a smooth manifold M by H*(M).

In [20] the following is proven: Let (M,w) be a 2n-dimensional compact sym-
plectic manifold with [w] € H*(M) admitting a lift to an integral cohomology
class. (Without loss of generality, the latter can always be assumed, see 34,
Observation 4.3].) Then there exists kg € N, such that for each £ € N, with
k > ko there is a symplectic submanifold j: Z < M of dimension 2n — 2 whose
Poincaré dual satisfies PD[Z] = k[w]. Moreover, the map j is a homology (n—1)-
equivalence in the following sense.

Let f: M; — M, be a smooth map between smooth manifolds. f is called
homology s-equivalence, s € N, if it induces isomorphisms f*: H*(My) — H'(M;)
on cohomology for ¢ < s — 1 and a monomorphism for 7 = s.

A symplectic submanifold j: Z < M as above is called symplectic divisor or
Donaldson submanifold.

Concerning minimal models and formality in this context, we quote the fol-
lowing results. Part (i) resp. (ii) in the theorem coincides with Proposition 5.1
resp. Theorem 5.2 (i) in [27], where a proof is given.

Theorem 2.2.1 (|27]). Let f: My — M; be a homology s-equivalence between
connected smooth manifolds. Denote by p;: (\Vi,d) = (2(M;),d) the minimal
models of M; fori=1,2.

(i) There exist a morphism F: (\Vy*,d) — (AV=*,d) of differential graded
algebras such that F: V,=° — V=% is an isomorphism, F: Vi — V¥ is a
monomorphism and py o F* = f* o p;.

(i1) If My is (s — 1)-formal, then My is (s — 1)-formal. O

Corollary 2.2.2 (|27, Theorem 5.2(ii)]). Let M be a 2n-dimensional compact
symplectic manifold and 5 : Z — M a Donaldson submanifold.

Then for each s < n — 2, we have: If M 1is s-formal, then Z is s-formal.

In particular, Z is formal if M is (n — 2)-formal. O

Next, we want to give a criterion for a Donaldson submanifold not to be
formal.

Proposition 2.2.3. Let M be a compact symplectic manifold of dimension
2n, where n > 3. Using the notation from page 5, we suppose that there are
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cohomology classes a; = (o] € HY(M),1 < i < 3, such that the (triple-)Massey
product

H*(M)
ap UHl(M) +H1(M) U ag

(a1,a2,a3) = [a1 A&z + &1 ANas) €
15 defined and does not vanish.

Then every Donaldson submanifold of M is not 1-formal.

Proof. Let j: Z — M be a Donaldson submanifold. Since n > 3, j is a
homology 2-equivalence. This implies that the (triple-)Massey product
H*(Z)
Jjray UHYZ)+ H (Z)U j*as

(7 a1, as, j*as) = [j oa N j*&as+ 77612 N jras] €

is defined and does not vanish. Now, Corollary 1.2.5 implies that Z is not 1-
formal. U

As an immediate consequence of the proposition we get:

Corollary 2.2.4. Let Zy, ..., Zy, M be compact symplectic manifolds and assume
that Z; — Z;1 and Z — M are Donaldson submanifolds for i =1,... k— 1.
We suppose that there are cohomology classes a; = [o;] € HY(M),1 <1 < 3, such
that the (triple-)Massey product

HA (M)
ay UHl(M) +H1(M) Ua,g

(a1, ag,a3) = [ag Néag+ &2 Nagl €

15 defined and does not vanish.
If dim Z, > 4, then Z7 is not 1-formal. O

The next lemma will be needed in the proof of Theorem 2.1.7. The proof is
taken word by word from the proof of Formula (5) in [27]. Note that we denote
the map [w]U...: HP(M) — HPT?(M) by [w]: HP(M) — HP2(M).

Lemma 2.2.5. Let (M, w) be a 2n-dimensional compact symplectic manifold and
7 Z = M a Donaldson submanifold.
Then for each p=2(n—1) —i, 0 <1i < (n — 2), there is a monomorphism

HP(M)
ker([w]: H?(M) — Hr2(M))

— HP(Z).

Proof. The claim can be seen via Poincaré duality. Let 0 < i < (n — 2),
p=2(n—1)—1iand o € Q*(M) be closed. Then we have

]*[Oz] =0 <— vbeHi(Z) ]*[a] Ub=0.
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Since i < (n — 2), we know that there is an isomorphism j*: HY(M) = H'(Z),
thus we can assume that for each b € H*(Z) there is a closed i-form 8 on M with
[6]z] = 5[] = b and get

j*[a]Uj*[ﬂ]:/Zj*a/\j*ﬂz Ma/\ﬂ/\k:w,

since [Z] = PD[kw] for k € N. Therefore, we have
J'la] =0 <= Vigenion) [ Aw]U[] =0 <= [a Aw] =0,

from where the lemma follows. O

2.3 Known examples

In this and in the next but one section we make use of some basic results on
nilmanifolds. Readers who are not familiar with this notion should read pages 22
up to 24 of Section 3.1 first.

2.3.1 The manifolds M(p,q)

The following examples are taken from [13].
Let R be a ring with 1. For p € N let H(1, p; R) be the set

|z,z€ RP Ny € R}.

—
o OS5
o~ 8
— < W

We write H(1,p) for H(1,p;R). Clearly, this is a nilpotent Lie group and the
2p + 1 differential 1-forms

a; =dx;, B:=dy, 7, :=dz —x;dy, 1<1i<p,

form a basis of the left-invariant 1-forms. Obviously, we have da; = df = 0 and

Further, let ¢ € N_. We set G(p,q) := H(1,p) x H(1,q). Again, this is a
Lie group and analogous as above, we denote the 2p + 2g + 2 forms which form
a basis of the left-invariant 1-forms by

ala"'70410757717"'77}770[17"'7aq7ﬁ7717"'77q'

An easy computation shows that the 2-form

p q
w::Zai/\%JrZ@i/\%‘i‘ﬁ/\B
i—1 i—1
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is a left-invariant symplectic form. Therefore M (p,q) := G(p,q)/T(p, q), where
C(p,q) == H(1,p;Z) x H(1,q;7Z), is a compact symplectic nilmanifold of di-
mension 2p + 2q + 2. From Theorem 3.1.5 below we get the minimal model
p: Mg, d) = (2AM(p,q)),d) as
MJ\/[(p,q) = /\(al, .. .,ap,b,cl,. .. ,cp,dl, .. .,dq,g,él, .. .,6(1),
a = =l = @l = bl =&l =1,
da; = db = da; = db =0, dc¢; = —a;b, dé; = —a,b,
pla;) = ai, p(b) =B, plci) =i, plai) =as, p(b) =B, p(&i) = Y.

Therefore, we see by (M(p,q)) =p+q + 2.
Proposition 2.3.1 (|13]). M(p,q) is not formal.

Proof. ([5], [a], [cu]) is a non-vanishing Massey product. O

Using Theorem 3.1.5 again, one computes the first cohomology groups of
M(p, q) as

ail [B), @l [A] |1 < i < p 1<k < q),

[
[ov; A ), T A Gl [os A B 1B A ), [B A dul, [B A B,
[ A3, [BAA] 1 <id,5 <p,1<k1<q).

2.3.2 The manifold Mg

Fernandez and Munoz constructed in |29] an 8-dimensional non-3-formal compact
symplectic manifold (Mg, w) with

bo(Ms) = bs(Mso) = 1, bi(Msp) = br(Mso) = 0,

2.1
bQ(M&O) = b6(M870) = 256, bg(Mg,o) = b5(M870) = 0, b4(Mg,0) = 269 ( )

as desingularisation of an orbifold. The latter is a Zs-quotient of a nilmanifold.
The non-formality is proved by regarding the G-Massey product ([9]; [11], [72], [73])
for certain closed 2-forms o, 7; on Mgg: One has ([J]; [11], [2], [13]) = A [w?] for
A # 0. Clearly, Aw* is not exact, and since b3(Ms ) = 0, it follows from Definition
1.2.3 that this G-Massey product does not vanish.
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2.4 Proofs

Proof of Theorem 2.1.6

Because products with finitely many copies of S? give the higher-dimensional
examples, it is enough to prove that for every b > 2 there is a non-formal compact
symplectic 4-manifold M with by (M) = b.

Examples for b € {2,3} were given in [24]. We shall see them in the proofs of
Theorems 2.5.5 and 3.6.2 below.

Now let b > 4 and choose p,q € Ny such that p4+¢+2 =b. Then M(p, q) has
dimension 2p 4+ 2g + 2 > 6 and is a non-formal compact symplectic nilmanifold
with by (M (p, q)) = b which satisfies the assumption of Corollary 2.2.4. Therefore,
we get the required non-formal 4-manifold Z with b(Z) = b;(M(p,q)) =b. O

Proof of Theorem 2.1.7

Since direct products with finitely many copies of S? gives the higher-dimensional
ones, it is enough to find a six-dimensional example. This will be constructed in
Theorem 3.8.3.2 below.

But using the ideas from above, one can construct an eight dimensional ex-
ample as follows:

Gompf has shown in [34] that there is a compact symplectic 4-manifold M)
with b;(M,,) = 1. By Proposition 1.1.7, My, = Mgg X My, is a compact
symplectic 12-manifold which is not 3-formal. Clearly, we have by (M2;) = 1.
Denote the projections by m: Mjs1 — Mg, p: Mi21 — My and the symplectic
forms of Mgy, My, and Mya; by w,0 and 2 = m*w+p*o. Let 9, 7; be the 2-forms
of Section 2.3.2. We mentioned ([J]; [11], [2], [13]) = X [w?] # 0.

Let j: Zy0,1 = M2 be a Donaldson submanifold. The 10-form

QAT W = (T*w + p o) AATW = Ap o Am*w!
on My does not represent the zero class in

H(Misy) 2 (([0%)) ® HY(Myy)) @ (H*(Myy) ® H(Msy)).

Therefore, we get from Lemma 2.2.5: \ j*7*[w?] € H®(Z101)\{0}. From (2.1) we
know H®(Msg) = 0. Hence ([j*7* 7], [j*7*], [j*7*7n]) = 0 for 1 < k,1 < 3. So in
the following G-Massey product there is no indeterminacy:

(7 0] [ mi), [ ma), (577 7)) = A [w] # 0

It follows that Zyo; is not formal. The fact that dim Z;5; = 10 and by (Z101) =1
is clear by the remarks in Section 2.2.
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Now, let 5 Zg1 — Zipq be a Donaldson submanifold. Then the 10-form
J*QU A Nj*r*wt on Zyg1 does not represent the zero class in H'*(Zyg ), for we
have

P ATt = (p*o + mw) A (pFo Amrw?t) = 2p*a? Amtwt £ 0,
and by Lemma 2.2.5 we get [j*(Q A m*w?)] # 0.

Again we use Lemma 2.2.5 to see \ j*j*7*[w*] € H®(Zg1)\{0} and can prove
similarly as for Zjp; that Zg is not formal. Moreover, Zs ; is 8-dimensional and
has first Betti number equal to one. 0

Remark. A Donaldson submanifold Zg; of the manifold Zgs; that we have con-
structed in the last proof is formal: From the 2-formality of Mjo; = Mg X My,
it follows that Zg; is 2-formal and therefore formal by Theorem 1.1.6.

Proof of Theorem 2.1.8

My is the eight dimensional example and the higher-dimensional examples are
obtained by the taking product of Mg with finitely many copies of S2. U

2.5 Contact manifolds

We would like to end this chapter with a question that arises naturally once with
have proved Theorem 2.1.9:

For which pairs (m,b) with m odd can we find a non-formal compact contact
m~manifold with b; = b7

Recall that a contact manifold is a pair (M, £ = ker «), where M is a smooth
(2n+1)-manifold M and a € Q'(M) a 1-form with a, A (da),” # 0 for all p € M.
The hyperplane field ¢ is called a contact structure; the 1-form a a contact form
on M.

Theorem 2.5.1. For each pair (m,b) with m > 3 odd and b > 2 there exists a
non-formal compact contact m-manifold with by = b.

The remainder of the chapter is devoted to the proof of this theorem.
Our starting point is a non-formal symplectic manifold. Boothby and Wang
proved that there is a contact manifold which fibres over it with fibre a circle.

Theorem 2.5.2 (|6, Theorem 3|). If (M,w) is a compact symplectic manifold
whose symplectic form determines an integral cohomology class of M, then the
principal circle bundle m: E — M with first Chern class ¢;(7) = |w] € H*(M,Z)
admits a connection 1-form o such that 7w = da and « is a contact form on

E. U

Let E, M be as in the last theorem. Since E is an S'-bundle over M, one can
apply the Gysin sequence to obtain by (E) = by(M). If dim M > 4, we can even
find a contact manifold which has the same fundamental group as M:
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Corollary 2.5.3. Let (M,w) be a compact symplectic manifold of dimension
2n > 4 whose symplectic form determines an integral cohomology class.

Then there is a symplectic form W' on M#CP™ determining an integer coho-
mology class, a compact contact manifold (E, ker o), and a principal circle bundle
w: E — M#CP™ with first Chern class c¢;(m) = [w'] such that the fundamental
groups satisfy m (E) = 71 (M#CP") = 7, (M).

Proof. We use the same argumentation as in the proof of |34, Theorem 4.4].
After blowing up a point in M, we can obtain a manifold M’ := M#CP" with
a symplectic form o’ such that [w'] = [w] + ce € H*(M') = H*(M) ® H*(CP"),
where ¢ € ﬁ and e is a generator of H*(CP™). Without loss of generality,
we can assume that w’ determines an integral cohomology class and there is an
embedded sphere S C M’ = M#CP" such that [,w' = 1. (Since [;w’ depends
on the size of the ball removed from M in the blow-up, we may have to enlarge
w by an integer scale first.) Let m: £ — M’ with ¢;(7) = [&] as in Theorem
2.5.2. Then the restriction of the fibration 7 to S is the Hopf fibration, i.e.
771(S) = 5% and the middle map in the following part of the homotopy sequence

is an isomorphism:

{0} = mo(n71(9)) — m(S) — m(S') — (7 H(S)) = {1}.

m5(S) — m(S1) is an isomorphism. From S C M’ we get in the following part of
the homotopy sequence of the fibration 7 that the first map is surjective:

7T2(M,) — 7T1(Sl) — 7T1(E) — 7T1(M/) — 71'0(51) = {]_}
This yields an isomorphism 7, : 7 (E) — m(M') = m(M). O

Under certain conditions we can show that the contact manifold that we have
just constructed is not formal.

Proposition 2.5.4. Let (M,w) be a compact symplectic manifold of dimension
2n > 4 whose symplectic form determines an integral cohomology class. Further,
suppose that there are cohomology classes a; € HY (M), 1 < i < 3, such that
(ay,as,a3) is a non-vanishing Massey product in M.

Then the manifold E of Corollary 2.5.3 is not formal.

Proof. Let m: E — M’ := M#CP" be as in Corollary 2.5.3 and the non-
vanishing Massey product (ai, as, as) be defined by a 2-form oy - &o3 + 12 - as.
(Here we use the notation from page 5.) We show:

m*: HY(M') — H'(FE) is an isomorphism, :
H*(M) Nker (7*: H*(M') — H*(E)) = {0}. (2.3)

Then 7*ay - ™€y 3 + &1 2 - ™ g defines the non-vanishing Massey product
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(m*ay, " ag, m"as) €

so E is not formal.

[Assume (7*ay, m*ag, m*a3) vanishes. Then for j = 1,2 there exists a class
[Z;.j+1] € HY(E) such that 0 = d=Z; ;41 = 7" a;-7* ;1. Property (2.2) implies the
existence of [§j7j+1] S Hl(M/> with 0 = dﬂ-*gj,j-i-l = 7T*Oéj . 7T*Oéj+1 fOI‘j = 1, 2, i.e.
a; - oy is exact by (2.3) and ([aq], [ae], [os]) vanishes, which is a contradiction. |

It remains to show (2.2) and (2.3): Consider the Gysin sequence of 7.

[w -

(0} — HY(M') = HYE) — BO(M") ¥ m2(00) =5 HY(B) — ... (2.4)

[Wu: HOY(M') — H?*(M') is injective. Therefore, 7*: H'(M') — H(E) is an
isomorphism, i.e. (2.2) holds.

Further, we get ker (7*: H*(M') — H*(E)) @4

Rjw']. Denote
pry: H*(M') = H*(M) ® H*(CP") — H*(CP")

the projection onto the second factor. Since w’ is the symplectic form of the
blow-up of M, we have pt,y([w']) # 0. But pry|m2a) = 0, so (2.3) follows. O

Using the preparations that we have done, we are able to construct explicit
non-formal contact manifolds.

Theorem 2.5.5. For eachn € N withn > 2 and b € {2,3} there exists a compact
contact (2n + 1)-manifold which is not formal.

Proof. In |24] the following manifolds are studied. Let M,, b € {2,3} be the
four dimensional nilmanifold with basis of left-invariant 1-forms {«, 8,7, n} such
that

da=dg =0,
dy=aA B,
Jany o b=2
b= { 0 : b=3 }
Then, by (M,) = b, the 2-form o A n+ S A~ is a symplectic form for M,, and
(B],18],[a]) = —[B A ] is a non-vanishing Massey product. Again, one can
assume that the symplectic form determines an integral cohomology class. The

case n = 2 now follows from Proposition 2.5.4. For n > 2 consider the manifolds
M, x (8%)"2 instead of M. O
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Remark. The manifold M; in the last proof is the Kodaira-Thurston manifold
that we mentioned at the beginning of this chapter.

Theorem 2.5.6. For each b € N with b > 2, there are non-formal compact
contact manifolds of dimension 3 and 5 with first Betti number by = b.

Proof. By Theorem 1.3.1, we know that there is a compact oriented 3-manifold
M with by = b > 2 which is non-formal. By theorems of Martinet 52| and Geiges
[33, Proposition 2] M and M x S? admit contact structures. Further, it follows
from Proposition 1.1.7 that M x S? is not formal. O

Now, Theorem 2.5.1 follows from Theorems 2.5.5, 2.5.6, Proposition 1.1.7 and
the following result of Bourgeois:

Theorem 2.5.7 ([8]). Let M be a compact contact manifold of dimension greater
than or equal to three.
Then M x T? admits a contact structure. U



Chapter 3

Solvmanifolds

In this chapter we want to study compact homogeneous spaces G /I, where G is
a connected and simply-connected Lie group and I' a discrete subgroup in G. It
is well known that the existence of such a I' implies the unimodularity of the Lie
group GG. Recall that a Lie group G is called unimodular if for all X € g holds
trad X = 0, where g denotes the Lie algebra of G.

If we further demand G/T" to be symplectic (when G is even-dimensional), a
result of Chu [12] shows that G has to be solvable.

Therefore, we regard compact quotients of connected and simply-connected
solvable Lie groups by discrete subgroups, so called solvmanifolds.

First, we recall the definition of nilpotent and solvable groups resp. Lie alge-
bras.

(i) Let G be group and denote its neutral element by e. We define the de-
rived series (D™ Q) ey, descending series (G*®))peny and ascending series
(G(k))ken of subgroups in G inductively as follows:

DOG =G0 =@,
DFE G = [D(k—l)G7D(k—l)G]7 Gk .— G, G(k—l)})
G(O) = {6}7 G(kz) = {9 S G‘ [Q,G] C G(kz—l)}-

G is called nilpotent if there exists ko € N such that G*0) = {e}.
G is called solvable if there exists ko € N such that D*)G = {e}.

(ii) Given a Lie algebra g, one defines the derived, descending and ascending
series of subalgebras in g via

DOg:=g® =g,
DWg .= [D*=Dg, DE=Ng] g .= [g, g1,
go) = {0}, ow ={X€gl[X, 0 Cogp-1}

and calls g nilpotent resp. solvable if its ascending resp. derived series be-
comes trivial for ky large enough.

21
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We collect some properties in the following proposition. The parts which are
not obvious can be found in [76, Section 3.18].

Proposition 3.0.1.

(i) The subgroups arising in the derived, descending and ascending series of
a group are normal. Moreover, they are closed and simply-connected Lie
subgroups in the case of a connected and simply-connected Lie group.

(i1) The subalgebras arising in the derived, descending and ascending series of
a Lie algebra are ideals.

(11i) A Lie group is nilpotent resp. solvable if and only if its Lie algebra is nilpo-
tent resp. solvable. O

3.1 Nilmanifolds

We give a brief review of known results about a special kind of solvmanifolds,
namely nilmanifolds. For the study non-formal symplectic manifolds, nilmani-
folds form one of the best classes. On the one hand, the non-toral nilmanifolds
introduce a geometrical complexity, while on the other hand their homotopy the-
ory is still amenable to study. In particular, their minimal models are very easy
to calculate and we shall see that each non-toral nilmanifold is non-formal.

A nilmanifold is a compact homogeneous space G/I", where G is a connected
and simply-connected nilpotent Lie group and I' a lattice in G, i.e. a discrete
co-compact subgroup.

Example. Every lattice in the abelian Lie group R"™ is isomorphic to Z". The
corresponding nilmanifold is the n-dimensional torus. U

In contrast to arbitrary solvable Lie groups, there is an easy criterion for
nilpotent ones which enables one to decide whether there is a lattice or not.

Recall that the exponential map exp: g — G of a connected and simply-
connected nilpotent Lie group is a diffeomorphism. We denote its inverse by
log: G —g.

Theorem 3.1.1 (|66, Theorem 2.12]). A simply-connected nilpotent Lie group G
admits a lattice if and only if there exists a basis { X1, ..., X,} of the Lie algebra
g of G such that the structure constants C’fj arising in the brackets

X5, X)) =) Ch X,
k

are rational numbers.
More precisely we have:
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(i) Let g have a basis with respect to which the structure constants are rational.
Let go be the vector space over Q spanned by this basis.

Then, if L is any lattice of mazimal rank in g contained in go, the group
generated by exp(L) is a lattice in G.

(i) If I is a lattice in G, then the Z-span of log(I') is a lattice L of mazimal
rank in the vector space g such that the structure constants of g with respect
to any basis contained in L belong to Q. O

For a given lattice I' in a connected and simply-connected nilpotent Lie group
G, the subset log(I") need not to be an additive subgroup of the Lie algebra g.

1 = 2
Example. Consider the nilpotent Lie group G:={| 0 1 y | |z,y,2 € R}.
0 01
0 =z =z
Its Lie algebrais g:= {| 0 0 vy | |z,y,2 € R}, and the logarithm is given
00 0
by
0 z =z 1L x z2-%
log(| 0 0y |)=101 Yy
00 0 0 0 1

The set of integer matrices contained in G forms a lattice I' in G' and

log(I') = {

o O O
o O 2
S 0O

la,b €7, (ab=0(2) = c € Z), (abzuz);»ce%Z)}

is not a subgroup of g.

If T is a lattice such that log(I") is a subgroup of the Lie algebra, we call " a
lattice subgroup.

Note that in the context of general Lie groups the name “lattice subgroup”
has a different meaning, namely that G/I" has a finite invariant measure. For
nilpotent groups and discrete I', the latter is the same as to require that I' is a
lattice.

Theorem 3.1.2 (|14, Theorem 5.4.2|). Let I' be a lattice in a connected and
sitmply-connected nilpotent Lie group.

(i) T' contains a lattice subgroup of finite inde.
(ii) T is contained as a subgroup of finite index in a lattice subgroup. 0

For later uses, we quote the following two results.
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Proposition 3.1.3 (|14, Lemma 5.1.4 (a)|). Let G be a locally compact group,
H a closed normal subgroup and I" a discrete subgroup of G. Moreover, denote
by m: G — G/H the natural map.

IfI'N H is a lattice in H, and ' is a lattice in G, then w(I') is a lattice in
G/H and 'H = HT is a closed subgroup of G. O

Theorem 3.1.4 (|14, p. 208]). Let G be a connected and simply-connected nilpo-
tent Lie group with lattice I' and k € N.

Then TNDWGE, TNG® resp. T'N G are lattices in D®G, G® resp. G-
Note, Gy is the center Z(G) of G. O

We have seen that it is easy to decide if there is a lattice in a given connected
and simply-connected nilpotent Lie group, i.e. if it induces a nilmanifold. More-
over, nilmanifolds have very nice properties which will be described now. Below,
we shall see that these properties are not satisfied for general solvmanifolds.

Note that we can associate a DGA to each Lie algebra g as follows:

Let {Xi,...,X,} be a basis of g and denote by {x1,...,2,} the dual basis
of g*. The Chevalley-FEilenberg complex of g is the differential graded algebra
(A g*,0) with ¢ given by

i<j
where C}; are the structure constants of {X1,..., X, }.

Theorem 3.1.5 (|61], |63, Theorem 2.1.3|). Let G/I" be a nilmanifold and denote
by ;. (G) the vector space of left-invariant differential forms on G.

Then the natural inclusion ., (G) — Q(G/T) induces an isomorphism on
cohomology.

Moreover, the minimal model of G /T is isomorphic to the Chevalley-FEilenberg
complex of the Lie algebra of G. O

Corollary 3.1.6. Any nilmanifold satisfies by > 2.

Proof. Let g be a nilpotent Lie algebra. By |78, Theorem 7.4.1] we have
H'Y(A\ g%, 0) = g/[g,g]- By |18] any nilpotent Lie algebra g satisfies the inequality
dim g/[g, g] > 2 which then implies b;(g) > 2. Hence the claim follows from the
preceding theorem. U

We now quote some results that show that it is easy to decide whether a
nilmanifold is formal, K&hlerian or Hard Lefschetz.

Theorem 3.1.7 (|39, Theorem 1|). A nilmanifold is formal if and only if it is a
torus. 0

Theorem 3.1.8 (|63, Theorem 2.2.2|). If a nilmanifold is Kdhlerian, then it is
a torus. 0
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This theorem follows from Theorem 3.1.7. Another proof was given by Benson
and Gordon in [4]. In fact they proved the following:

Theorem 3.1.9 ([4, pp. 514 et seq.|). A symplectic non-toral nilmanifold is not
Lefschetz. U

Corollary 3.1.10. A symplectic nilmanifold is Hard Lefschetz if and only if it
15 a torus, independent of the special choice of the symplectic form. U

3.2 Solvmanifolds in general

A solvmanifold is a compact homogeneous space G/I';, where G is a connected
and simply-connected solvable Lie group and I' a laftice in G, i.e. a discrete
co-compact subgroup.

Remark. It is important to note that there is a more general notion of solvmani-
fold, namely a compact quotient of a connected and simply-connected solvable
Lie group by a (possibly non-discrete) closed Lie subgroup (see |2]), but we are
only considering solvmanifolds as in the last definition. Sometimes, such are
called special solvmanifolds in the literature.

By [63, Theorem 2.3.11|, a solvmanifold in our sense is necessary parallelisable.
E.g. the Klein bottle (which can be written as compact homogeneous space of a
three-dimensional connected and simply-connected solvable Lie group) is not a
solvmanifold covered by our definition.

Obviously, every nilmanifold is also a solvmanifold. But most solvmanifolds
are not diffeomorphic to nilmanifolds: Every connected and simply connected
solvable Lie group is diffeomorphic to R™ (see e.g. [76]), hence solvmanifolds are
aspherical and their fundamental group is isomorphic to the considered lattice.
Each lattice in a nilpotent Lie group must be nilpotent. But in general, lattices in
solvable Lie group are not nilpotent and therefore the corresponding solvmanifolds
are not nilmanifolds.

The fundamental group plays an important role in the study of solvmanifolds.

Theorem 3.2.1 ([66, Theorem 3.6]). Let G;/T'; be solvmanifolds for i € {1,2}
and ¢: 'y = I's an isomorphism.
Then there exists a diffeomorphism ®: Gy — G4 such that

(Z) (I>|F1 =g,
(i) Vver,Voea, ®(py) = @(p)e(7). O

Corollary 3.2.2. Two solvmanifolds with isomorphic fundamental groups are
diffeomorphic. O
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The study of solvmanifolds meets with noticeably greater obstacles than the
study of nilmanifolds. Even the construction of solvmanifolds is considerably
more difficult than is the case for nilmanifolds. The reason is that there is no
simple criterion for the existence of a lattice in a connected and simply-connected
solvable Lie group.

We shall quote some necessary criteria.

Proposition 3.2.3 (|53, Lemma 6.2|). If a connected and simply-connected solv-
able Lie group admits a lattice then it is unimodular. U

Theorem 3.2.4 (|55],|63, Theorem 3.1.2|). Let G/T" be a solvmanifold that is not
a nilmanifold and denote by N the nilradical of G.

Then I'y := 'V N s a lattice in N, 'N = NI is a closed subgroup in G
and G/(NT) is a torus. Therefore, G/I" can be naturally fibred over a non-trivial
torus with a nilmanifold as fiber:

N/Ty = (NI)/T — G/T — G/(NT) = T*
This bundle will be called the Mostow bundle. ]
Remark.

(i) The structure group action of the Mostow bundle is given by left transla-
tions
NT/Ty x NT/T —s NT/T,

where T'y is the largest normal subgroup of I' which is normal in NT'. (A
proof of the topological version of this fact can be found in |70, Theorem
[.8.15]. The proof for the smooth category is analogous.)

(ii) A non-toral nilmanifold G/I' fibers over a non-trivial torus with fibre a
nilmanifold, too, since I' N [G, G] resp. im(I' — G/[G,G]) are lattices in
|G, G| resp. G/[G, G], see above.

In view of Theorem 3.2.4, we are interested in properties of the nilradical of a
solvable Lie group. The following proposition was first proved in [56]. Since the
paper is written in Russian and the author of this thesis does not speak Russian,
it is possible that the proof below is the same as in [56].

Proposition 3.2.5. Let G be a solvable Lie group and N its nilradical.
Then dim N > %dimG.

Proof. Denote by n C g the Lie algebras of N C G and by n¢ C gc their
complexifications. Note that gc is solvable with nilradical ng, so from |76, Corol-
lary 3.8.4] it follows that nc = {X € gc¢ | ad(X)|[ge,gc) Dilpotent}. Therefore, since
ad: gc — Aut([gc, gc]) is a representation of gc in [gc, g¢), by Lie’s theorem
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(e.g. |76, Theorem 3.7.3]) there exist A1,..., A\x € g¢ such that ng = ﬂle ker \;,
where k := dlm(c [g(c, g(c]

A straightforward calculation shows dimg¢ ﬂle ker \; > dim¢ gec — k, so we
have proven. dlm(c ne > dlm(c dc — dlm(c [g(c, g(c]

Because gc is solvable, we get by |76, Corollary 3.8.4] that [gc, g¢c| C ne and
hence dimc ne > dime ge — dime ne, i.e.

2 dlm(c ne > dlm(c dc-

The proposition now follows from dimg g = dim¢ gc and dimgn = dimene. O

In some cases, we will be able to apply the next theorem to the situation of
Theorem 3.2.4. It then gives a sufficient condition for the Mostow bundle to be
a principal bundle.

Theorem 3.2.6. Let G be a connected and simply-connected solvable Lie group

and I' a lattice in G. Suppose that {e} # H & G is a closed normal abelian Lie

subgroup of G with H C N(I'), the normalizer of I'. (For example the latter is

satisfied if H is central.) Assume further that 'y :=T'N H is a lattice in H.
Then H/T'g = HT'/T is a torus and

H/Ty — G/I' — G/HT (3.1)
s a principal torus bundle over a solvmanifold.

Proof. By assumption, H is a closed normal abelian subgroup of G and I'y is
a lattice in H. We have for hyv, hoye € HI" with h; € H, v; € ' the equivalence

(hi71) ' (havy2) €T <= hi'hy € Ty,

i.e. H/Ty = HI'/I". Therefore, Proposition 3.1.3 implies that (3.1) is a fibre
bundle whose fibre is clearly a torus and its base a solvmanifold. The structure
group action is given by the left translations

HT /Ty x HT/T —s HTT,

where T'y is the largest normal subgroup of I' which is normal in HI'. (This
can be seen analogous as in Remark (i) on page 26.) Since H is contained in
N(T)={g€ G|glg~! =T}, we have for each h € H and 7,7 € T

(hy)v0(hy) ™" = hyyoy 'h™t e DA™ =T,
i.e. I' =Ty and the theorem follows. L]

We have seen that the Chevalley-Eilenberg complex associated to a nilmani-
fold is its minimal model. In this respect, arbitrary solvmanifolds differ in an
essential way from nilmanifolds. However, in the special case of a solvmanifold
which is the quotient of completely solvable Lie group, one has an access to the
minimal model.
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Definition 3.2.7. Let GG be a Lie group with Lie algebra g.

(i) G and g are called completely solvable if the linear map ad X: g — g has
only real roots! for all X € g.

(i) If G is simply-connected and exp: g — G is a diffeomorphism, then G is
called ezponential and the inverse of exp is denoted by log: G — g.

Remark. In the literature a connected and simply-connected Lie group is some-
times called exponential if the exponential map is surjective. This is weaker than
our definition.

A nilpotent Lie group or algebra is completely solvable, and it is easy to see
that completely solvable Lie groups or algebras are solvable. Moreover, the two
propositions below show that simply-connected completely solvable Lie groups
are exponential, and exponential Lie groups are solvable. Note that the second
proposition is simply a reformulation of results of Saitdé and Dixmier.

Proposition 3.2.8 (|64, Theorem 2.6.3|). Any exponential Lie group is solv-
able. O

Proposition 3.2.9. A connected and simply-connected solvable Lie group G with
Lie algebra g is exponential if and only if the linear map ad X: g — g has no
purely imaginary roots for all X € g.

Proof. Let G be a solvable Lie group. By |67, Théoréme II.1], ad X has
no purely imaginary roots for all X € g if and only if the exponential map is
surjective. If this is the case, |67, Théoréme I.1] implies that the exponential
map is even bijective. For solvable Lie groups, the statement “(1°) < (2°)” of
[19, Théoréme 3| says that this is equivalent to the exponential map being a
diffeomorphism. O

Let a lattice in a connected and simply-connected solvable Lie group be given.
Then Theorem 3.2.4 stated that its intersection with the nilradical is a lattice in
the nilradical. In the case of completely solvable Lie groups, we have an analogue
for the commutator.

Proposition 3.2.10 (|35, Proposition 1|). Let G be a connected and simply-
connected completely solvable Lie group and I" a lattice in G.

Then [I',T] is a lattice in [G,G|. In particular, I' N [G, G| is a lattice in
G, q]. O

We formulate the result that enables us to compute the minimal model of
solvmanifolds which are built by dividing a lattice out of a completely solvable
group. The main part of the next theorem is due to Hattori [44].

!By a root of a linear map, we mean a (possibly non-real) root of the characteristic polyno-
mial.



3.2. SOLVMANIFOLDS IN GENERAL 29

Theorem 3.2.11. Let G/T" be a solvmanifold. Denote by () g*,0) the Chevalley-
FEilenberg complex of G and recall that g* is the set of left-invariant differential
1-forms on G. Then the following holds:

(i) The natural inclusion (N g*,d) — (QUG/T),d) induces an injection on co-
homology.

(ii) If G is completely solvable, then the inclusion in (i) is a quasi-isomorphism,
t.e. it induces an tsomorphism on cohomology. Therefore, the minimal
model Mg is isomorphic to the minimal model of the Chevalley-Eilenberg
comple.

(iii) If Ad(T') and Ad(G) have the same Zariski closures®, then the inclusion
in (i) is a quasi-isomorphism. O

Proof. (i) is [63, Theorem 3.2.10] and (iii) is [66, Corollary 7.29].

ad (ii): Denote the mentioned inclusion by i: (A g*,d) — (Q(G/T),d). By
Hattori’s Theorem (see |63, p. 77]), this is a quasi-isomorphism. It remains
to show that the minimal model p: (Mcg,dcr) — (A g, 0) of (Ag*,d) is the
minimal model of (2(G/I'),d). Since the minimal model is unique and the map
iop: (Meg,ocr) — (2(G/T),d) is a quasi-isomorphism, this is obvious. O

There are examples where the inclusion in (i) in the last theorem is not a
quasi-isomorphism: Consider the Lie group G which is R? as a manifold and
whose Lie group structure is given by

(s,a,b) - (t,x,y) = (s +t, cos(2mt) a — sin(27t) b+ x,sin(27t) a + cos(27t) b+ y).

G is not completely solvable and one calculates for its Lie algebra b;(g) = 1. G
contains the abelian lattice T’ := Z3 and G/T is the 3-torus which has b, = 3.

We have seen in the last section that the first Betti number of a nilmanifold is
greater than or equal to two. For arbitrary solvmanifolds this is no longer true.
Below, we shall see various examples of solvmanifolds with b; = 1. The following
corollary shows that b; = 0 cannot arise.

Corollary 3.2.12. Any solvmanifold satisfies by > 1.

Proof. Let g be a solvable Lie algebra. As in the nilpotent case we have
bi(Ag*,0) = dimg/[g,g], and dimg/[g,g] > 1 by solvability. The claim now
follows from Theorem 3.2.11 (i). O

2A basis for the Zariski topology on GL(m,C) is given by the sets
Up := GL(m,C) \ p~*({0}),

where p: GL(m,C) & C(m*) — C ranges over polynomials.
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To end this section, we shortly discuss the existence problem for Kéhler struc-
tures on solvmanifolds. The only Kéhlerian nilmanifolds are tori, but in the gen-
eral context we have the hyperelliptic surfaces, which are non-toral Kéahlerian
solvmanifolds, see Section 3.6 below. (|63, Theorem 3.4.1] states the only Kéhle-
rian solvmanifolds in dimension four are tori. This is not correct, as first noted by
Hasegawa in |42].) Benson and Gordon |5] conjectured in 1990 that the existence
of a Kéhler structure on a solvmanifold G/T" with G completely solvable forces
G/T to be toral and this is true. In fact, Hasegawa proved in the first half of this
decade the following:

Theorem 3.2.13 ([42]). A solvmanifold G/T" is Kdhlerian if and only if it is a
finite quotient of a complex torus which has a structure of a complex torus bundle
over a complex torus.

If G is completely solvable, then G /T is Kdihlerian if and only if it is a complex
torus. U

In later sections we shall see that neither the Hard Lefschetz property nor
formality is sufficient for an even-dimensional solvmanifold to be Kahlerian.

3.3 Semidirect products

In later sections we shall try to examine low-dimensional solvmanifolds. Con-
cerning this, a first step is to use the known classification of the (connected and
simply-connected) low-dimensional solvable Lie groups. Most of them have the
structure of semidirect products. In order to define this notion, we recall the
construction of the Lie group structure of the group of Lie group automorphisms
of a simply-connected Lie group in the following theorem. It collects results that
can be found in [77, pp. 117 et seq.|.

Theorem 3.3.1.

(i) Let b = (|b] = R, [...,..]) be an h-dimensional Lie algebra. Then the
set A(h) of Lie algebra isomorphisms of b is a closed Lie subgroup of the
automorphism group Aut(|h|) of the h-dimensional vector space |b|. The

Lie algebra of A(h) is

0(h) = {¢ € End(|b]) | ¢ derivation with respect to [...,...]}.

(ii) Let H be a connected and simply-connected Lie group with neutral element
e and Lie algebra . The Lie group structure of A(H), the group of Lie
group automorphisms of H, is given by the following group isomorphism:

A(H) — A(b) , fr—def.
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Moreover, if H is exponential, its inverse is the map
A(h) — A(H) , ¢ — exp opologh .
O

For given (Lie) groups G, H and a (smooth) action u: G x H — H by (Lie)
group automorphisms, one defines the semidirect product of G and H wvia u as
the (Lie) group G x, H with underlying set (manifold) G x H and group structure
defined as follows:

Vg h) (goheax i (g1 1) (g2, ha) = (9192, (g5 ", P )hs)

Note that for (g,h) € G x, H we have (g,h)™" = (97, u(g, ™).

If the action p is trivial, i.e. Vyeq nem (g, h) = h, one obtains the ordinary
direct product. In the case of Lie groups G and H, the exponential map exp®*#
is known to be the direct product of exp® and exp’. If the action is not trivial,
the situation becomes a little more complicated:

Theorem 3.3.2. Let G, H be connected Lie groups and pu: Gx H — H a smooth
action by Lie group automorphisms. Denote the Lie algebras of G and H by
g and b and let ¢ = (degpt1): g — 0(h), where pi: G — A(h) is given by
:ul(g) = deH/”L(g7 - ) = AdgG[XMH‘

(i) The Lie algebra of G %, H is g Xy h. This Lie algebra is called semidirect
product of g and by via ¢. Its underlying vector space is g X b and the bracket
for (X1,Y1), (X2, Y3) € g x b is given by

(X1, Y1), (Xa, Ya)] = ([X1, Xalg, [Y3, Yaly + 6(X1)(Ya) — &(X2)(Y1)).
In the sequel we shall identify X = (X,0) and Y = (0,Y).

(i1) For (X,Y) € g Xy b one has exp@ =2 ((X)Y)) = (exp®(X),v(1)), where
v: R — H is the solution of

J(t) = (dey Bo) (exp™® (=t ad(X)[5)(Y)), 7(0) = en.
Here R, denotes the right translation by an element a € H.

Proof. The proof of (i) can be found in |76]. We give a proof of (ii). Given a
Lie group homomorphism f between Lie groups, we denote its differential at the
neutral element by f,.

For (907 hO)v (.97 h) €eG Xp H we have R(go,ho)(g> h) = <R90<g)7 Rho(:u(g(]_lu h))a
and this yields for (X,Y) € g x4 b

(R(go,ho))*((X> Y)) = ((Rgo)*(X)v (Rho)* (,ul(go_l)(y)))
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Since (71(t),72(t)) := exp“*»H (£ (X,Y)) is the integral curve through the iden-
tity of both the right- and left-invariant vector fields associated to (X,Y), the
last equation implies that (71(t),72(t)) is the solution of the following differential
equations:

71(0) = €gq, 71<t) = (R'Yl(t)>*(X)7
12(0) =en,  Ya(t) = (Byy) (1 (1 (=1)) (V).

71(t) = exp®(t X) is the solution of (3.2), and this implies
Gx,H|
pa(ni(=t)) = Admﬂ(—t) ly = eXPA(h)(_t ad(X)lp),

i.e. (3.3) is equivalent to 72(0) = ex, V2(t) = (Rop)«(exp® (=t ad(X)|y)(Y)).
So the theorem is proven. 0

A connected and simply-connected solvable Lie group G with nilradical N is
called almost nilpotent if it can be written as G = R x, N. Moreover, if N is
abelian, i.e. N = R", then G is called almost abelian.

Let G = R x,, N be an almost nilpotent Lie group. Since N has codimension
one in GG, we can consider u as a one-parameter group R — A(N). By Theorem
3.3.1, there exists ¢ € 9(n) with

Vier p(t) = exp™ o exp™™ " (tp) o log" .
Choosing a basis of |n|, we can identify Aut(|n|) with a subset of gl(n,R) and get
Vier de(p(t)) € exp® ™ (gl(n, R)).

Note, if N is abelian, the exponential map exp”: n — N is the identity. These

considerations make it interesting to examine the image of expGt(»R),

Theorem 3.3.3 (|62, Theorem 6|). M is an element of expS-®) (gl(n, R)) if and
only if the real Jordan form of M contains in the form of pairs the blocks belonging
to real negative eigenvalues \; , whenever there exist real negative eigenvalues \;
of M. ILe. the block belonging to such a X\, is of the following form

N[ Jny O
S5 )

j=1
with
AT 0
AT
Jn” = ¢ S M(nw,an)
1
0 Ar
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We are now going to derive some facts that follow from the existence of a
lattice in an almost nilpotent Lie group.

Theorem 3.3.4 ([74]). Let G = R %, N be an almost nilpotent and completely
solvable Lie group containing a lattice I

Then there is a one-parameter group v: R — A(N) such that v(k) preserves
the lattice T'y := T NN for all k € Z. T is isomorphic to Z x, 'y and G/T 1is
diffeomorphic to (]R X, N)/(Z X, 'y )

Moreover, there are t; € R\{0} and an inner automorphism I,, € A(N) such
that v(1) = u(ty) o I, .

Proof. We know that I'y is a lattice in N and im(I' - G/N) 2 '/Ty is a
lattice in G/N = R. Therefore, I'/T'y = Z is free, and by Proposition C.2 the
following exact sequence is split:

{1} - T'y - T — Z — {0},

i.e. there is a group-theoretic section s: Z — I'. [67, Théoréme I1.5] states that a
group homomorphism from a lattice of completely solvable Lie group into another
completely solvable Lie group uniquely extends to a Lie group homomorphism of
the Lie groups. Hence, s extends uniquely to a one-parameter group s: R — G.
Therefore,

v: R — A(N), v(t)(n)=s(t) n-s(t)?,

is a one-parameter group with Viez v(k)(I'y) = 'y, the lattice T' is isomorphic
to Z %, I'y by Proposition C.7 and G/I is diffeomorphic to (]R X, N)/(Z X, FN).

Let v, :=s(1) € (' \I'nv) C R x, N. There are unique t; € R\ {0}, n; € N
with v, = t1 - ny, where we identify ¢; = (¢1,en) € G and ny = (0,n1) € G. Since
G =R x, N and G = R x, N with the same normal subgroup N of G, one has
forallne N

v()(n) =y -yt =ty ong-nenyt -t = p(t)(ng - nngt) = pt) (I, (n)),
from where the theorem follows. O

Corollary 3.3.5. Let G = R x, N be an almost nilpotent (not necessary com-
pletely solvable) Lie group containing a lattice T'. Again, denote by 'y :=T NN
the induced lattice in the nilradical of G.

Then there exist t; € R\ {0}, a group homomorphism v: 7. — Aut(T'y), and
an inner automorphism I, of N such that I' = Z x, I'y and v(1) = u(ty) o I,,.

If G is almost abelian, then a basis transformation yields I' = t,7Z x|, Z".

Proof. We argue as in the last proof. But we do not use |67, Théoréme 5| and
get only a group homomorphism v: Z — Aut(I'y) (defined on Z instead of R).
For general N, the calculation at the end of the proof implies the claim.
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Since an abelian group has only one inner automorphism, in the almost abelian
case this yields v(1) = u(t1)|ry, so v can be extended to v: R — A(R"™) via
v(t) :== p(t - t1). Further, by Corollary 3.2.2, we have I'y = Z". O

Hence we have seen, that the existence of a lattice in an almost nilpotent Lie
group implies that a certain Lie group automorphism must preserve a lattice in
the (nilpotent) nilradical. The next theorem deals with such automorphisms.

Theorem 3.3.6. Let N be a connected and simply-connected nilpotent Lie group
with Lie algebra n, f, € A(n), and f = exp™ of, olog" € A(N), i.e. d.f = f..
Assume that f preserves a lattice I' in N.

Then there exists a basis X of n such that Mx(f.) € GL(n,Z), where Mx(f.)
denotes the matriz of f. with respect to X.

Moreover, if there are a one-parameter group p: R — A(N) and to # 0 such

that u(to) = f, i.e. de(u(to)) = fi, then det (de(u(...))) = 1.

Proof. By Theorem 3.1.1 (ii),

L= (og"(D))y ={) _kiVi|m €Ny k; € Z,V; € log"(I')}

1=1

is a lattice in n. Therefore, there exists a basis X = {X3,..., X,,} of n such that
L= (X).

Since f(I') C I, we have f,(log™ (")) C log™(I). This implies f.(£) C £ and
hence, Mx(f.) € GL(n,Z).

Further, if wu(tg) = f with p, to # 0 as in the statement of the theorem,
then the map A :=detod.(u(...)): (R,+) — (R\ {0},-) is a continuous group
homomorphism with A(0) = 1 and A(ty) = £1, i.e. A =1. O

Remark. The basis X in the last theorem has rational structure constants.

Obviously, a one-parameter group p in the automorphism group of an abelian
Lie group with pu(ty) integer valued for ¢y # 0 defines a lattice in R x, R™. It
is easy to compute the first Betti number of the corresponding solvmanifold, as
the next proposition will show. Before stating it, we mention that the situation
becomes more complicated in the case of a non-abelian and nilpotent group N.

Let a one-parameter group pu: R — A(N) be given and ty # 0 such that
de(p(to)) is an integer matrix with respect to a basis X of the Lie algebra n
of N. In general, this does not enable us to define a lattice in R x, N. But if
[y = exp™ ({X)z) is a lattice in N, i.e. I'y is a lattice group, then this is possible.

Proposition 3.3.7. Let u: R — SL(n,R) be a one-parameter group such that
(1) = (miz)i; € SL(n, Z).
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Then M = (R x, R")/(Z %, Z") is a solvmanifold with

7T1(M) = <60, €1,...,€En | vie{l ..... n} 606i60_1 = 6?“ s €nmm
Vijel,.my [€ines] =1 )

and by(M) =n+ 1 — rank (p(1) —id).

Proof. The statement about the fundamental group is clear. Therefore, we
get

Hi{(M,Z) = {eg,e1, .- en | Viermy €5 el el =1
Vijeo,..ny [eir 5] =1 )
and this group is the abelianisation of
Z®{er, ... en|Vieq, myel™ el emni = 1),

Now, the proof of the theorem about finitely generated abelian groups (see e.g.
[7]) shows Hy(M,Z) = Z"*' @ @, Zg,, where dy,...,d, € N, denote the
elementary divisors of p(1) —id. The proposition follows. O

We finally mention a result of Gorbatsevich. In view of Theorem 3.2.11 (iii), it
enables us to compute the minimal model of a wide class of solvmanifolds which
are discrete quotients of almost abelian Lie groups.

Theorem 3.3.8 (|35, Theorem 4]). Let u: R — SL(n,R) be a one-parameter
group such that p(1) = expSt®)(1(0)) € SL(n,Z). Denote by Ai,..., A\, the
(possibly not pairwise different) roots of 1(0). Then I' := (Z %, Z") is a lattice
in G = (Rx,R").

The Zariski closures of Ad (I") and Ad (G) coincide if and only if the number
i 18 not representable as a linear combination of the numbers A\, with rational
coefficients. U

3.4 Semisimple splittings

In distinction from the nilpotent case, criteria for the existence of a lattice in
connected and simply-connected solvable Lie groups have rather cumbersome
formulations. The criterion that we present is due to Auslander [2]| and makes
use of the concept of semisimple splitting.

Let G be a connected and simply-connected Lie group. We call a connected
and simply-connected solvable Lie group G5 = T x,, N, a semisimple splitting
for G if the following hold:

(i) Ny is the nilradical of G — the so called nilshadow of G — and T = R* for
k = dim G4 — dim N,
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(ii) 7 acts on Ny via vs by semisimple automorphisms,
(iii) G is a closed normal subgroup of G5 and G, =T X, G,
(iv) Ny = Zn,(T) - (NsNG), where Zy,(T) denotes the centralizer of 7" in Nj.

This definition then implies (see e.g. [15, Lemma 5.2|) that Ny is a connected
and simply-connected nilpotent Lie group, N = NN G, and G/N = T.

Theorem 3.4.1 (|15, Theorems 5.3 and 5.4|). Let G be a connected and simply-
connected solvable Lie group. Then G admits a unique semisimple splitting.

We shall not give the whole proof of this theorem that can be found in [15].
But we shortly describe the construction of the semisimple splitting. In order to
do this, we recall the Jordan decomposition of certain morphisms:

Let ¢ be an endomorphism of a finite-dimensional vector space over a field of
characteristic zero. There is a unique Jordan sum decomposition

@Z@s“‘(ﬁm Ps © Pn = Pn © Ps,

with ¢, semisimple and ¢, nilpotent. They are called respectively the semisimple
part and the nilpotent part of . If ¢ is an automorphism, it also has a unique
Jordan product decomposition

@ = Ps O Py, Ps O Py = Py © Ps,

with ¢ semisimple and ¢, unipotent; ¢, is the same as in the sum decomposition
and @, = id + (¢; ! 0 ,). The latter is called the unipotent part of .

Note, if ¢ is a derivation resp. an automorphism of a Lie algebra, then the
semisimple and the nilpotent resp. unipotent part of ¢ are also derivations resp.
automorphisms of the Lie algebra.

Now, let G' be a connected and simply-connected Lie group and f: G — G a
Lie group automorphism.

Then f, := d.f is a Lie algebra automorphism which has a Jordan product
decomposition f, = (fi)s © (fe)u = (f¥)u © (fi)s- The semisimple and unipotent
part of f are by definition the unique Lie group automorphisms fs, f,: G — G
with defs = (f*)s and defu = (f*)u

Construction of the semisimple splitting. Let G be a connected and simply-
connected solvable Lie group. Denote by N the nilradical of G.

By [15, Proposition 3.3|, there exists a connected and simply-connected nilpo-
tent Lie subgroup H of G such that G = H - N. Fix such an H and consider
the well-defined (!) action w: H — A(G) given by w(a)(h-n) :=h- (I,|n)s(n),
where (I,|n)s is the semisimple part of the automorphism of N which is obtained
by conjugating every element of N by a.
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Define T:= H/(NNH) = HN/N = G/N = R*. Note that there is an action
w of T' on GG making the following diagram commutative:

w

H - A(G)

T=H/(HNN)

Set G, :=T x5 G.
One calculates that

Ny:={n(h™")-h|he H}-N={(r(h""),h-n)|h€e Hne N} CT x G =G,

is the nilradical of G4. Furthermore, we have T'- Ny, = G and T'N Ny = {e}. For
teT,he H,neN and every hy € 7~ ({t}) holds

vs(t)(w(h) - (h-n)) = t-w(h™") - (h-n) -t
= w(h™) - (h-&(h)(n),

i.e. v4(t) is a semisimple automorphism and G, = T x,,_ N;.

Remark. As usual, we denote the Lie algebras of the above Lie groups by the
corresponding small German letters. In |21, Chapter III] can be found:
There exists a vector subspace V' of |g| with |g| = V @ |n| as vector spaces
and V4 pev ad(A)s(B) = 0, where ad(A), denotes the semisimple part of ad(A).
Let v be a copy of V, considered as abelian Lie algebra. Then the Lie algebra
of the semisimple splitting for G'is g5 = v Xaq(..), @, i.€.

Yax).Byes (A, X), (B, Y)] = (0,[X,Y] + ad(A),(Y) — ad(B)(X)),

with nilradical ny = {(= Xy, X) | X € g}, where Xy denotes the component of
X in V.

Now we state the announced criterion for the existence of lattices in solvable
Lie groups.

Theorem 3.4.2 (|2, p. 248]). Let G be a connected and simply-connected solvable
Lie group with nilradical N and semisimple splitting Gs =T x,,, Ns, where Ny is
the nilshadow of G.

Then G/N is contained as a subgroup in Gs/N =T x (Ng/N) and the pro-
jections m: G/N — T, my: G/N — Ng/N are isomorphisms of abelian Lie
groups.

Moreover, G admits a lattice if and only if the following conditions are satis-

fied:
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(i) There exists a basis X := { X1, ..., Xn, ..., X;n} with rational structure con-
stants of the Lie algebra ng of Ny such that {Xy,...,X,} is a basis of the
Lie algebra n of N.

We write ng(Q) for the rational Lie algebra (X)q and Ns(Q) for its image
under the exponential map.

(i) There exists a lattice subgroup Iy of T with I'r C momy ! (NS(Q)/N) such
that the natural action T'r — A(ng(Q)) is described by integer matrices in
an appropriate basis of ng(Q). O

3.5 Three-dimensional solvmanifolds

The only one- and two-dimensional solvmanifolds are tori. Therefore, we begin
our studies of low-dimensional solvmanifolds in dimension three.

Proposition 3.5.1 (|3]). Every 3-dimensional connected and simply-connected
solvable non-nilpotent Lie group G that possesses a lattice I' has a 2-dimensional
nilradical. The Lie group can be written as G = R x, R? and the lattice as
I =7Zwx,7Z*

Proof. This is a direct consequence of Proposition 3.2.5 and Corollary 3.3.5. U

Theorem 3.5.2. A three-dimensional solvmanifold G/T" is non-formal if and
only if by (G/T") = 2. In this case, G/T" is diffeomorphic to a nilmanifold.

Proof. By Theorem 3.1.7, it suffices to consider the case when G is solvable and
non-nilpotent. The last proposition implies that there is a map v: Z — SL(2,Z)
such that ' = Z x,, Z>.

If none of the roots of v(1) equals 1, Proposition 3.3.7 implies b; = 1, so G/T
is formal by Theorem 1.3.1.

Assume that v(1) possesses the double root 1. Then Proposition 3.3.7 implies
by = 3 if v(1) is diagonalisable and b; = 2 if v(1) is not diagonalisable.

Case A: v(1) is diagonalisable
Recall that a solvmanifold is uniquely determined by its fundamental group.
Therefore, we can assume G = R x, R? and I’ = Z x, (v1,v2)7 with linearly
independent vy, vo € R? and u(t) = id. In this case, G/T is a torus which is
formal.

Case B: v(1) is not diagonalisable
In this case, we can assume G = R x, R? as well as I' = Z x, (v1,v2)7 with
linearly independent v;, v, € R? and

u(t)=<é i)
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The Lie algebra g = (T, X, Y | [T, Y] = X)) of G is nilpotent, so G/I" is a nilmani-
fold with b; = 2. Therefore, it cannot be a torus and is not formal by Theorem
3.1.7. H

In |3, Chapter III §3| the three-dimensional solvmanifolds which have no nil-
manifold structure are examined. This, together with the last theorem, yields a
“cohomological” classification of three-dimensional solvmanifolds.

Theorem 3.5.3. Fvery 3-dimensional solvmanifold G/T" is contained in Table
3.1 on page 39. In particular, G/T is non-formal if and only if it is a non-toral

Table 3.1: 3-dimensional solvmanifolds
| | 0:(G/T) | G/T formal | Nilmfd. ® | cs. * |

a) 3 yes Torus yes
b) 2 1no yes yes
c) 1 yes no yes
d) 1 yes no no
nilmanifold. O

Example. The torus R3/Z? is a solvmanifold with b; = 3, and examples of
3-dimensional solvmanifolds with b; = 2 will be given in the next theorem.
For i € {1,2} consider the Lie groups G; = R x,, R? where y; is given by
p1(t)(x,y) = (ehz e ty), pa(t)(x,y) = (cos(t) z + sin(t) y, — sin(t) x + cos(t) y).
(G is completely solvable and possesses the lattice

1 18485
Fl = tlz Kﬂl << 1 ) s 7+?2’\/5 >Z7
3+v5

where t; = ln(3+2‘/5). Note that the following equation implies that I'y really is a
lattice

t 18485 1848v5 \
( € ?tl ) — < ! T+3V5 ) ( 0 -1 ) < ! T+3V5 ) , (3.4)
0 e 1 Y 1 3 1 Y

(G5 is not completely solvable and contains the lattice

Fg =77 X g Zz.

A short computation yields that the abelianisations of I'; have rank one, i.e.
we have constructed examples of type ¢) and d) in Table 3.1.

3possesses the structure of a solvmanifold as quotient of a nilpotent Lie group
4possesses the structure of a solvmanifold as quotient of a completely solvable Lie group
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Theorem 3.5.4. Every lattice in the unique 3-dimensional connected and simply-
connected non-abelian nilpotent Lie group

1 z 2
Us(R):={[ 0 1 ¢ | [z,y,2€R}
0 01
1z £
is isomorphic to s, :==T3,(Z) :={| 0 1 y | |z,y,z€ Z} withn € N,.
0 0 1
Therefore, any three-dimensional nilmanifold with by = 2 is of the form

Us(R)/T'3.(Z).
I3, (Z) is presented by (e1, e, €3] [e1,e2] = €f and e central ).

Proof. U3(R) is the only connected and simply-connected non-abelian nilpo-
tent Lie group of dimension three. By |3, Chapter III § 7|, each lattice in it is
isomorphic to I's ,. The other assertions follow trivially. ]

Sometimes, we shall write (x,y, z) for the corresponding matrix in Us(R).

For later applications, we are going to determine the Lie group automorphisms
and the one-parameter groups of Usz(R). In order to do this, we start with the
following proposition. Note that Z(G) denotes the center of a group G.

Proposition 3.5.5.
(i) [Us(R), Us(R)] = Z(Us(R)) = {(0,0,2) | = € R}, Us(R)/Z(Us(R)) = R?

(i1) Every Lie group homomorphism f: Us(R) — Us(R) induces natural Lie
group homomorphisms

fz: Z(Us(R)) — Z(Us(R))
and
[ Us(R)/Z(Us(R))  — Us(R)/Z(Us(R)).
[('TvyvO)] = [(.T,y,Z)] — [f((l’,y,Z))] = [(fl(x7y70)7f2(x7y70)70>]

f uniquely determines fz, and f is an automorphism if and only if f is
such.

(iii) Let vi = (a1,b1,2), 72 = (ag, by, 2) € I's,. Then there is a unique homo-
morphism g: I's,, — I's, such that g((l,0,0)) =y and g((O, 1,0)) = .
Moreover, g((O, 0, %)) = (0, 0, %(albg — CLle)).

One has U3, /Z(Ts,,) 2 Z2, and g is an isomorphism if and only if
gi FS,n/Z(FZ’),n) — F3,n/Z(F3,n)

s an isomorphism, i.e. a1 by — asby = +1.
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Proof. (i) is trivial.
ad (ii): Let f: Us(R) — U3(R) be a Lie group homomorphism. Then

£((0,0,2)) = [£((%,0,0)), £((0,1,0))] € Z(Us(R)), (3.5)
ie. f(Z(Us(R))) C Z(Us(R)). Moreover, one has for (a,b,c) := f((z,y,0))
(a,b,0)"" - (a,b,¢) = (—a, —b, —ab) - (a,b,c) = (0,0, —2ab+ c) € Z(Us(R)),

and therefore [(a,b,0)] = f([(z,9,0)]). Now, (3.5) implies that f; is uniquely
determined by f.

Assume, f is an isomorphism. Then (3.5) also holds for f~! and we get
f(Z(Us(R))) = Z(Us(R)), i.e. fz is an isomorphism of the additive group R.
Since f is continuous, there exists m € R\{0} such that f7((0,0,z)) = (0,0,mz).
Denote by (fi;)i<ij<o the matrix of f: R* — R? with respect to the basis

{( (1) ) : ( (1) )} of the vector space R?. One calculates

(O707det<fij)> = [(f117f2170>7 <f127f2270>] = [f((17070))7f((07 170))]

D (0,0,m),

w

so f is an automorphism, since m # 0.

Conversely, if f is an automorphism, then the homomorphism f is given by
fZ((O,O,z)) = (0,0,det(f)z) which is even an automorphism. Therefore, the
5-Lemma implies that f is an automorphism.

ad (iii): Let 71,72 be as in (iii). Then [v1,72] = (0,0, 2(asby — asb;))" and
this implies the existence of the (unique) homomorphism g with the mentioned
properties.

If g is an isomorphism, then g(Z(I's,,)) = Z(I's,,) = {(0,0,2) |z € Z}, and
therefore |a;by — asb;| = 1. Since the matrix of § has determinant a;by — asby, f
is an isomorphism.

Again, the converse is trivial. U

Theorem 3.5.6. As a set, the group of Lie group automorphisms A(Us(R))
equals GL(2,R) x R?, the group law is given by

(A,a) o (B,b) = (AB,det(B)B 'a+ det(A)b)), (3.6)

and for f = (A = < - ] ) , ( ! )) € A(Us(R)) and (z,, 2) € Us(R) we have

f((z,y,2)) = (az+ By, vz + oy,

det(A)z + fryzy + Fa® + %yz + uy — vz). (3.7)
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Proof. Let f € A(U3(R)) and (x,y,2) € Us(R) be given. We have to show

that there is (( C; ? ) : ( : )) € GL(2,R) x R? such that f((z,y,2)) satisfies

(3.7). Then a short computation yields (3.6).

Let ( : ? ) € GL(2,R) be the matrix of f with respect to the canonical

basis of R%. We showed in the last proof f((0,0,z)) = (0,0det(f)z).
There exist smooth functions f;, fo: R — R with

f((:);,0,0)) = (ax,vyz, fi(x)),
f((07y70)) = (ﬁy75y7f2(y))

We set u := f,(0) and v := —f;(0). The homomorphism property of f implies

e+ h) - a@) = DO
e+ n - p) = LU0 g,
and this yields
fl@) = —va+ St
foly) = uy+ %yz-
Using (.4, 2) = (0, y,0)(x,0,0)(0,0, =), one computes (3.7). O

u

Corollary 3.5.7. f = (A, ( ; )) € A(Us(R)) with A = ( : ? ) lies on a

one-parameter group of A(Us(R)) if and only if A lies one a one-parameter group
of GL(2,R).

If vy, = ( 3: ?j ) denotes a one-parameter group with v = A, then the map

e R — A(Us(R)) defined by

Mt((l", Y Z)) = (at:)s + By, v + 0y,
(udy — Bim) 2 + By + “9a? + 290y2 + tuy — tox)

=1
1S a one-parameter group with p; = f.

Proof. The only claim that is not obvious is the fact that u; defines a one-
parameter group. Using vy, = 14 o g, this can be seen by a short calculation. [J
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3.6 Four-dimensional solvmanifolds

As we have done in the three-dimensional case, we are going to give a “coho-
mological” classification of four-dimensional solvmanifolds. We shall consider all
isomorphism classes of lattices that can arise in a four-dimensional connected
and simply-connected solvable Lie group. The next proposition describes such
lattices in the case of a non-nilpotent group.

Proposition 3.6.1. Every 4-dimensional connected and simply-connected solv-
able non-nilpotent Lie group G that possesses a lattice I' has a 3-dimensional
nilradical N which is either R? or U3(R). Therefore, G/T fibers over St (this is
the Mostow bundle) and the Lie group can be written as G = R x, N. If N is
abelian, a basis transformation yields I' = Z x Z3. Otherwise, I' is isomorphic
to Z %, I's,,, where v: Z — Aut(I's,,) is a group homomorphism with
v()(z,y,2) = (alx + agy, bix+ by, asbizy + a1b1@ + agbgw
+1(c1z + oy + (arby — azhy)z)),

a2 —

where ¢y, ¢y, € Z, and ( o € GL(2,7Z) is the matriz of v(1) with respect to

by Do
the canonical basis of the Z-module 7Z* = T's,,/Z(L's,,). Moreover, U(1) lies on a
one-parameter group R — A(Us(R)/Z(Us(R))) = GL(2,R), i.e. (1) € SL(2,R).

Proof. From [63, Theorem 3.1.10] follows dimN =3 and G =R x, N. If N
is abelian, Corollary 3.3.5 implies that we can assume I' = Z x| , 73,

Assume now that N is not abelian, i.e. N = U3(R). I'y = I'N' N is a
lattice in N and by Theorem 3.5.4, we have I'y = I's,,. By Corollary 3.3.5,
there is a homomorphism v: Z — Aut(I's,) with I' = Z x,, I';,,. Proposition
3.5.5(iii) implies that v(1) is determined by (a1,b1,2) = v(1)((1,0,0)) and
(a2, bs, 2) := v(1)((0,1,0)) € I's,,. Since (z,y,2) = (0,1,0)¥(1,0,0)%(0,0,2)%, a
short computation yields the claimed formula for v(1)((z,y, 2)).

Further, Corollary 3.5.7 implies that 7(1) lies on a one-parameter group. [

Theorem 3.6.2. Every 4-dimensional solvmanifold G/T" is contained in Table
3.2. In particular, G/T is non-formal if and only if it is a non-toral nilmanifold.

Proof. Apart from the column on formality the theorem follows from works
of Geiges [31] and Hasegawa [40|. (Attention: In [40| a more general notion of
solvmanifold is used!)

A decomposable four-dimensional connected and simply-connected nilpotent
Lie group is abelian or has a two-dimensional center. The only connected and
simply-connected indecomposable nilpotent Lie group of dimension four has a
two-dimensional commutator. By Propositions 3.1.4 and 3.1.3, the correspond-
ing nilmanifolds have the structure of orientable T2-bundles over T?. (The ori-
entability follows from the total spaces’ orientability.)
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Table 3.2: 4-dimensional solvmanifolds
| | 6:(G/T) | G/T formal | symplectic | complex | Kéhler | Nilmfd. ® | c.s. © |

a) 4 yes yes Torus yes Torus yes
b) 3 no yes PKS 7 1no yes yes
¢) 2 yes yes no no no yes
d) 2 yes yes HS 8 yes no no
e) 2 no yes no no yes yes
f) 1 yes no no no no yes
g) 1 yes 1no 1509 1no no no
h) 1 yes no IS+ 10 no no yes
i) 1 yes 1no SKS 1 1no 1no 1no

From a result of Geiges [31, Theorems 1 and 3| follows that they are contained
in Table 3.2. (Recall that a nilmanifold is formal if and only if it is a torus.) In
particular, every four-dimensional nilmanifold is symplectic.

Now, we regard a lattice I' = Z x, I'y, I'y € {Z*,T'3,(Z)}, in a Lie group
G =R x, N as in the last proposition.

We expand Hasegawa’s argumentation in [40] by the aspect of formality and
consider the “roots” of v(1). Recall, Corollary 3.2.2 implies that a solvmanifold is
determined by its fundamental group. Below, we shall use this fact several times.
Case A.: 'y = 7Z?

By Proposition 3.6.1, v extends to a one-parameter group R — SL(3,R). Denote
by A1, A2, A3 € C the roots of v(1) € SL(3,Z), i.e. Ay - Ao - A3 = 1. We get from
Theorem 3.3.3 and Lemma B.4 that the following subcases can occur:

Al) )\1,)\2,)\3 € R_,.

A1) 3, N, =1 (wlog A\ =1)
ALLL) A=A =1
A112) A =Nt eR\ {1}
Al12) VY, N #1
A.1.2.1.) v(1) is diagonalisable
A.1.2.2)) v(1) is not diagonalisable

Spossesses the structure of a solvmanifold as quotient of a nilpotent Lie group
possesses the structure of a solvmanifold as quotient of a completely solvable Lie group
"PrimaryKodaira Surface

8Hyperelliptic Surface

Inoue Surface of Type S°

OTnoue Surface of Type STt

" Secondary Kodaira Surface
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A2.) A =1, Ay = A3 =—1 and v(1) is diagonalisable

A3) 3, i, EC\R (wlog da=X3€C\Rand \; € R)
A31) A =1
A32) A #£1

Case A.1.1.1.: )\1 = )\2 = )\3 =1
If v(1) is diagonalisable, then G/I' is clearly a torus. This is case a). If v(1) is
not diagonalisable we can assume G = R x, R}and ' =2Z X, (U1, V2, v3)7, where
1(t) is one of the following one-parameter groups

000 1 00
exp(t| 0 0 1 ]) = 01 ¢t |,

0 00 001

01 —3 1t (82 —t)
exp(t{ 0 0 1 |]) = 0 1 t

00 0 0 0 1

In both cases G/I' is a 4-dimensional nilmanifold and therefore symplectic. In
the first case, we have a primary Kodaira surface with b = 3, see |40, Section
2.2.3)]; in the second case the nilmanifold has b; = 2 and no complex structure,
see [41, Example 2|. Being non-toral nilmanifolds, both are not formal and we
get the cases b) and e).

Cases A.1.1.2. and A.1.2.1.: The ); are positive and pairwise different or
two of them are equal but (1) is diagonalisable. (The latter cannot happen by
Lemma B.4.)

We can assume G = Rx,R? and I’ = Z x, (v, v2, v3)z with linearly independent

exp(tIn(Ay)) 0 0
v1, V9, v3 € R3 where u(t) = 0 exp(tIn()y)) 0 . By
0 0 exp(tIn(A3))

[41, Example 2|, the solvmanifold G/T" does not admit a complex structure.
One computes the Lie algebra of G as

o= (T.X,Y.Z|[T,X] = n(\)X, [T.Y] = m(A)Y. [T, Z] = In(Xs)Z)

which is completely solvable and non-nilpotent. Therefore, the minimal model of
the Chevalley-Eilenberg complex is the minimal model of G/T.

If none of the roots \; is one, we see by Proposition 3.3.7 that b;(G/T") = 1.
Since G/I' is parallelisable, this implies bo(G/I") = 0, so the space cannot be
symplectic. Further it is formal by Theorem 1.3.1. This is case f) in Table 3.2.

If one of the roots is one (w.l.o.g. A\ = 1), we have b,;(G/I") = 2 and the
Chevalley-Eilenberg complex is

(/\(T,Oé,ﬁ,’}/), dr =da =0, d8 =—In(A) T A B, dy=—In(A3) T A 7).
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TAa+aAfB+aAy— A~y defines a symplectic form on G/I'. Further, one
computes the first stage of the minimal model of the Chevalley-Eilenberg complex
as

Mgl = /\(.I'l,{lj'g), dflfi = 0.

Therefore, G/I' is 1-formal and by Theorem 1.1.6 formal. This is case ¢) in Table
3.2.
Case A.1.2.2.: \; € R\ {1} and v(1) is not diagonalisable
In this case two roots must be equal (w.l.o.g. Ay = A\3) and the third is different
from the others, ie. \; = %% # Ag. Since the characteristic polynomial of v(1)
has integer coefficients, Lemma B.4 implies Ay = +1 and this is a contradiction.
Cases A.2. and A.3.1.: \; = 1, )y = \3 = exp(ip) € C\ R, ¢ €0, 27|
We can assume G = R, R? and I’ = Z x, (v, v2, v3)7 with linearly independent
1 0 0
vy, V2,03 € R where pu(t) = | 0 cos(tp) —sin(typ) | . Thus G/T is a hyper-
0 sin(tp) cos(ty)
elliptic surface (see [40, Section 3.3.]) which is Kédhlerian and has b; = 2. The
Lie algebra of G is not completely solvable and we are in case d).
Case A.3.2.: A\ # 1, )y = A3 = | \o] exp(ip) € C\ R, ¢ €]0,27[\{7}
We can assume G = R, R? and I’ = Z x, (v, v2, v3)7 with linearly independent
A 0 0
vy, V9,03 € R3 where p(t) = | 0 |Xao|'cos(ty) —|A2|'sin(tp) | . Thus G/T is
0 |Aof'sin(ty)  |A2|! cos(ty)
a Inoue surface of type S° (see [40, Section 3.6.]), which is not symplectic and
has b; = 1 (by Proposition 3.3.7, since 1 is no root of x(1)). By Theorem 1.3.1,
G/T' is formal. The Lie algebra of G is not completely solvable and this yields
case g) of Table 3.2.

Case B.: I'y =1'3,,(Z)

In this case we have a homomorphism v: Z — Aut(I's,(Z)). We shall write N
for Us(R) and I'y for I's ,,(Z). The automorphism v(1) induces an automorphism
7(1) of Ty /Z(T ) = Z* which lies by Proposition 3.6.1 on a one-parameter group
R — A(Us(R)/Tx) = GL(2,R). Denote the roots of 7(1) € GL(2,Z) by A1, As.
Theorem 3.3.3 shows that the following cases are possible:

Bl) Xl,XQ S R+

B.1.2) A =M #1

B.2.) X =X =—1and 7(1) is diagonalisable
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v(1) also induces an automorphism v(1) 7 of the center Z(I'y) of I'y which equals

det (77(1)) - id = id by Proposition 3.5.5(iii).
Case B.1.1.: \; =X\ =1

1 k

0 1

Proposition 3.6.1 yields v(1)((z,y, 2)) = (= + ky, y, k:y(yz_l) + AELVEE) and this

implies

By [30, Lemma 1], we can assume 7(1) = ( ) € SL(2,Z) with k € N. Then

I' = Zwx,Ts,
k _co

= <607"'7€3‘ [60761] 26517[62_1760] = €163 7[60763] 17[61762] :€g>

This is a discrete torsion-free nilpotent group, which can be embedded as a lattice
in a connected and simply-connected nilpotent Lie group by [66, Theorem 2.18|.
Since a solvmanifold is uniquely determined by its fundamental group, G/I" is
diffeomorphic to a nilmanifold.

As at the beginning of the proof, we conclude that G/I" is the total space of a
T?bundle over T? and occurs in our list. The quotient G/T is of type b) if k = 0
and of type e) if k #0.

Case B.1.2.: )\1—)\ e Ry \ {1}

We have 7(1) = o

b b ) € SL(2,7Z), and Proposition 3.6.1 implies
1 b2

v(1)(z,y,2) = (ma+ asy, biz+ bay, a2blxy+a1b1x(x Dy byl
+1 (e + oy + (a1b2 - Clzbl) ))

for certain ¢y, ¢y € Z.

Choose eigenvectors ( vt ) : < 51 ) € R?\ {0} with respect to the eigenval-
2

U2
ues A; resp. X of 77(1) (where 7 denotes the transpose). There exist uy, us, us € R
such that for v; := (v;, w;, u;), 1 € {1,2}, and ~3 := (0,0, u3) € Us(R) we have

N n
[717 72] =73,
10141 as _ bo

a(1)(n) =91 e sts w1 () = 1997757

where 7i(t) ((z,y, 2)) = (exp(tIn(Ay)) z, exp(tIn(X2)) y, 2).

Then G/T is diffeomorphic to the solvmanifold G/T', where G = R x5z Us(R)
and I = Z Xz (1,72, 73), 1.e. G/T is a Inoue surface of type ST, see [40, Section
3.7]. The Lie algebra of G,

ﬁ: <T7X7KZ‘ [T7X] :X7 [TvY] = _Y7 [XvY] :Z>7

is completely solvable and not nilpotent. Further, the knowledge of g implies
b1(G/T') = 1. By Theorem 1.3.1, G/T" is formal. Therefore, this is a solvmanifold
of type h) in Table 3.2.
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Case B.2.: \; = A\, = —1 and 7(1) is diagonalisable
-1 0
0 -1

c1 :v+02y+z )

[30, Lemma 1| implies that we can assume 7(1) = ) € SL(2,Z). So

Proposition 3.6.1 implies v(1)((z,y, £)) = (—z, —y, for certain integers
¢1, ¢ € Z. Moreover, G/T is diffeomorphic to G/T, Where G :=Rx; i Us(R),

(1) ((z,y, 2)) = (cos(tm) x — sin(tr) y, sin(tw)  + cos(tm) y, z + hy(z,y)),

hi(z,y) = 5sin(tr) (COS(tﬂ') (22 — y?) — 2Sin(t7r)xy> and I = Z X5 (71,72, 73)

such that [y1,72] = 7%, A(1)(n) = 77 '5" and f(1)(12) = 75 '95%. (Using the
addition theorems for sin and cos, one calculates that 1 is a one-parameter group

in A(Us(R)).) By [40, Section 3.5], G/T is a secondary Kodaira surface.
Obviously, the Lie algebra of G is not completely solvable and we cannot use
its Chevalley-Eilenberg complex for computing b, (G/I'). But since

I'= <€0, ...,€3 | 606160 =€ 163 ,606260 = €9 16; s [60, 63] 1, [61, 62] = 6?),

we see by (G/I') = rank 'y, = 1 and G/T" belongs to the last row in Table 3.2.
Case B.3.: \; = A, = exp(ip) € C\ R, ¢ €)0,2r[\{7}
This case is similar to the last one. We have [tr7(1)] < [A| 4+ [A2] = 2 and [30,

Lemma 1| implies that we can assume v(1) to be ? _01 or + ? _11

In each case, one computes b;(G/I') = rank 'y, = 1, as above. Moreover, one
embeds a lattice I" isomorphic to I' in the Lie group G := R x Us(R), where

(1) ((z,y, 2)) = (cos(ty) x — sin(ty) y, sin(te) x + cos(te) y, z + h(z,y)),

he(z,y) = 5 sin(ty) <cos(t<p) (22 —y?) =2 sin(tap)xy). Again, G/T is a secondary
Kodaira surface and G/I" is an example for case i). For more details see |40,
Section 3.5]. O

Below, we give examples for each of the nine types of four-dimensional solv-
manifolds. The Lie algebras of the connected and simply-connected four-dimen-
sional solvable Lie groups that admit lattices are listed in Table A.1 in Appendix
A.

Example. The following manifolds belong to the corresponding row in Table 3.2.

a) RY/Z*

b) (R &y, RO)/(Zx,, Z°), m(t) =

o O =
o~ o
—_ O
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¢) (R, R3)/T. with

1 0 Of
18+48V/5
Pc =17 D<uc < 0 s 1 s W >Z,
0 1 3+V5
1 0 0
t1=In(355) and p(t) = | 0 e 0 ; the proof that this is really
0 0 et
a solvmanifold is analogous to that in the example on page 39.
0
d) (Rx,,R)/(rZx,, O cost — sin(t)
sin(t)  cos(t)
1t 2(*—¢)
e) (R, RY)/(Zx, Z°), pe(t)=| 0 1 ¢
0 0 1
00 1
f) Consider A:=| 1 0 —11 | € SL(3,Z). Ahas X® —8X?+ 11X —1 as
01 8

characteristic polynomial which possesses three pairwise different real roots
t1 = 6,271, to = 1,631 and t3 ~ 0,098. Therefore, A is conjugate to (1),

et In(t1) 0 0
where pf(t) = 0 et 0 , and this implies the existence
0 0 et In(t3)
of a lattice I'y in the completely solvable Lie group R x R3.
00 1
g) Let A:=| 1 0 —8 | € SL(3,Z). The characteristic polynomial of A is
01 4

X3 —4X?+8X —1 which has three pairwise different roots t; ~ 0, 134 and
tas = (1/3/t1) (cos(p) £ isin(p)) ~ 1,933 £1,9354. So A is conjugate to
et In(t1) 0 0
pg(1), where p,(t) = 0 etntDcos(tp) —etMUt2Dsin(ty) |, and
0 et 2D gin(t ) et MUt cos(t )
this implies the existence of a lattice I'y in the Lie group R x R3.

h) Using Theorem 3.1.1, one shows that

1++5
71 = (17]-7_ )7
34+v5
- (_2(2+\/5) 1++v5 11455
2 3+v5 '3+v5 7+3v5

),
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Y3 o= (0707\/5)

generate a lattice I' in Us(R) with [v1,72] = 73 and 73 central.
Define the one-parameter group py,: R — A(U3(R)) by

pn(t) ((,y,2)) = (7", ey, 2),

S

3+v5

2

where ¢ := In( ). Then py(1) preserves the lattice I' with

prn(D)(71) =91 72, (1) (92) = 7172, 4 (1)(73) = 73
and therefore, Z %, I' is a lattice in R x,, Us(R).

i) Consider the Lie group G and the one-parameter group g of Case B.2 from
the proof of the last theorem. Setting v; = (1,0,0), 72 = (0,1,0) as well
as v3 = (0,0,1), n =1 and ¢; = co = 0, one explicitly gets an example.

The manifolds of type ¢) show that formal spaces with the same minimal
model as a Kéhler manifold need not be Kéhlerian. This was proved by Fernandez
and Gray.

Theorem 3.6.3 (|25]). Let M be one of the symplectic solvmanifolds of type c)
in the last theorem, i.e. M s formal and possesses no complex structure. M has
the same minimal model as the Kihler manifold T? x S2. U

3.7 Five-dimensional solvmanifolds

We study the five-dimensional solvmanifolds by regarding lattices in the corre-
sponding connected and simply-connected Lie groups. By Proposition 3.2.3, their
Lie algebras have to be unimodular. These are listed in Appendix A.

3.7.1 Nilpotent and decomposable solvable Lie algebras

There are nine classes of nilpotent Lie algebras in dimension five, see Table A.2.
Each of them has a basis with rational structure constants. By Theorem 3.1.1,
the corresponding connected and simply-connected Lie groups admit lattices and
accordingly to Theorem 3.1.7, the associated nilmanifolds are formal if and only if
they are tori. For i € {4,5,6} the connected and simply-connected nilpotent Lie
group with Lie algebra gs; possesses the left-invariant contact form x; (where
is dual to the basis element X; € g; as in Table A.2). Therefore, the corresponding
nilmanifolds are contact.

The eight classes of decomposable unimodular non-nilpotent solvable Lie al-
gebras are listed in Table A.3. Except for g42 @ g1, the corresponding connected
and simply-connected Lie groups admit lattices since both of their factors admit
lattices.
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Theorem 3.7.1.1. The connected and simply-connected Lie group G4o X R with
Lie algebra g4.0 & g1 possesses no lattice.

Proof. Write G for G4 x R and
g= <X17 cee 7X5‘ [X1,X4] = —2X1> [X27X4] = X27 [X37X4] = X5+ X3>

for its Lie algebra which has n = RY, y, x, x, as nilradical. Therefore, G can be
written as almost abelian Lie group R x, R* with

et 0 0 0
0 e’ —te’t 0
(1) =™ P adX)l) = | o 0 g
0 0 0 1

By Corollary 3.3.5, the existence of a lattice in G would imply that there is
ty € R\ {0} such that u(t,) is conjugate to an element of SL(4,7Z). Clearly, the
characteristic polynomial of yu(t,) is P(X) = (X—1) P(X), where the polynomial
P(X) = X3 — kX2 +1X —1 € Z[X] has the double root e~*". Lemma B.4 then
implies e~ = 1, i.e. t; = 0 which is a contradiction. O

Proposition 3.7.1.2. If I is a lattice in a five-dimensional completely solvable
non-nilpotent connected and simply-connected decomposable Lie group G, then
G/T is formal.

Proof. Let G, T" be as in the proposition. As usual, we denote by g the Lie alge-
bra of G. We have g = h @ kg, with k£ € {1,2} and a certain (5 — k)-dimensional
completely solvable non-nilpotent Lie algebra b, see Tables A.3 and A.1. By
completely solvability and Theorem 3.2.11 (ii), G/I" and the Chevalley-Eilenberg
complex of h & kg, share their minimal model M. The lower dimensional dis-
cussion above shows that for all h which can arise in the decomposition of g the
algebras M(p y= 5,) and Mp rq: 5=0) = (A kg7, 6 = 0) are formal. This implies the
formality of M = M(/\h*ﬁh) @ Mp kg ,6=0) - ]

3.7.2 Indecomposable non-nilpotent Lie algebras

There are 19 classes of indecomposable non-nilpotent Lie algebras in dimension
five which are unimodular. These are listed in Tables A.4 — A.7. Instead of
the small German letters for the Lie algebras in the mentioned tables, we use
capital Latin letters (with the same subscripts) for the corresponding connected
and simply-connected Lie groups.

We want to examine which of them admit lattices and where appropriate,
whether the quotients are formal. The non-existence proofs of lattices in certain
almost abelian Lie groups below are taken from Harshavardhan’s thesis [38|.
Some of the existence proofs of lattices in certain almost abelian Lie groups are
sketched in |38, pp. 29 and 30].
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Almost abelian algebras (with nilradical n:=4g; = (X3,..., X4]|))

We now consider the almost abelian Lie groups G5; = R x,, R*. We write
w(t) = pi(t) = expCt@R (tad(Xs)|,), where X5 € gs; is as in Table A4 (X5
depends on 7). We know by Corollary 3.3.5, Theorem 3.3.6 and Proposition 3.3.7
that there is a lattice I" in G5 ; if and only if there exists ¢; # 0 such that u(t;)
is conjugate to f1(1) € SL(4,Z) and I’ = Z xz Z*. This will be used in the proof
of the following propositions.

Methods to obtain integer matrices with given characteristic polynomial and
necessary conditions for their existence are given in Appendix B.

Proposition 3.7.2.1. Let p,q,7 € R with —1 <r < ¢ <p <1, pgr # 0 and
p+q+r = —1. If the completely solvable Lie group GE*" admits a lattice and M
denotes the corresponding solvmanifold, then M is formal, by(M) = 1 and one of
the following conditions holds:

(i7) bo(M) =2, ie. 7 =—1, p=—q€]0,1] or
(i1i) bo(M) =4, ie.T=q=—1, p=1.

p’q’T

Moreover, there exist p,q,r as above satisfying (i), (ii) resp. (iii) such that G4
admits a lattice.

Proof. We suppress the sub- and superscripts of G and g.

a) Assume, there is a lattice in G and denote the corresponding solvmanifold
by M. Since g is completely solvable, the inclusion of the Chevallier-Eilenberg
complex (/\(xl, cey T5), 5) into the forms on M induces an isomorphism on co-
homology. Moreover, the minimal model of (/\(ml, cy T5), 5) is isomorphic to
the minimal model of M.

0 is given by

(533'1 = —X15, 5.1}2 = —PTos, (533'3 = —({ I35, (533'4 = —T Xys5, 51’5 =0.

(Here we write x;; for z;x;.) This implies b (M) = 1.
One computes the differential of the non-exact generators of degree two in the
Chevalley-Eilenberg complex as

012 = (L4 p) 125, 13 = (1 4+ q) x135, Ox1a = (1 +7) 2145,
0x93 = (p+q) Taz5, O0xoa = (D+7)Tos, 034 = (¢ +7) Tays.

—1<r<q¢g<p<1l,pgr#0andp+q+r=—1impliesp # —1 and ¢ # —r
and a short computation yields that either (i), (ii) or (iii) holds.

In each case, we determine the 2-minimal model, i.e. the minimal model up
to generators of degree two and will see, that these generators are closed. By
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Definition 1.1.4, the minimal model then is 2-formal and Theorem 1.1.6 implies
the formality of M.

If we are in case (i), the minimal model has one closed generator of degree
one, and no generator of degree two.

If we are in case (ii), we have r = =1, p = —¢q €]0, 1],
012 = (L4 p)a1as #0, Ox13 = (1 —p)z13s #0,  dx14 =0,
0x93 = 0, 0x9q = (p - 1) X245 7& 0, Oxgy = (—1 - p) X345 75 0,
H'(M,R) ([z5]),

lle 11

H?*(M,R) ([z1a], [725]),
and the 2-minimal model p: (AV=2,d) — (A(z1,...,5),) is given by

ply) =ws,  |yl=1, dy=0;
p(z1) =z, |21 =2, dzn =0;
p(z2) = xa3, |22l =2, dz=0.

Note, further generators of degree < 2 do not occur, since y*> = 0 (by graded
commutativity) and p(yz;) is closed and non-exact. Here we use the construction
of the minimal model that we have given in the proof of Theorem 1.1.2.

Case (iii) is similar to case (ii).

b) Now, we show that there are examples for each of the three cases. In case

1 00 -2
(i), we follow |38] and consider the matrix 0 ? g _53 . It suffices to show
001 2

that there are t; € R\ {0}, -1 <r <g<p<1with pgr #0, p # —q, p # —r,
q # —r and p+ g+ r = —1 such that

e 0 0 0
0 e?r 0 0
0 0 e 0
0 0 0 e

is conjugate to the matrix above, which has P(X) = X4 —-8X3 +18X? —10X +1

pu(ty) = exp® B (¢ ad(X5)[0) =

as characteristic polynomial. P has four distinct roots A1, ..., Ay with A\; =~ 0,12,
Ay & 0,62, A3 =~ 2,79 and \y =~ 4,44. Define t; := —In(\) and p,q,r by
ePlt = )y, e79 = X3 and e = \4. Then t;, p, ¢, have the desired properties.
000 -1
. : 10 0 10 S .
In case (ii), regard the matrix 010 —923 which is conjugate to
0 0 1 10

et 0 0

for t; = 21n(3+2‘/5) and p = 1 since both
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matrices have the same characteristic polynomial which has four distinct real
roots.

30 -1 0
) 3 0 S )
In case (iii), regard the matrix L0 0 0 which is conjugate to
01 0 0
et 0 0 0
0 e 0 0 34vE s )
wu(ty) = 0 0 ot 0 for t; = 1n(—+2 ) since both matrices have the
0 0 0 e
same minimal polynomial by Proposition B.8 (ii). O

We have seen that a non-formal solvmanifold is a non-toral nilmanifold in
dimensions three and four. In higher dimensions this is no longer true as the
following proposition shows:

Proposition 3.7.2.2. The completely solvable Lie group Gy 5 admits a lattice.
Moreover, for each lattice T' the corresponding solvmanifold M = G 5/T has
b1 (M) =2 and is not formal.

Proof. Again, we suppress the sub- and superscripts. G' admits a lattice since

1 =t 0 0 000 -1
0 1 0 O 1 00 5
— oxCL(4R) _
wu(t) = exp (tad(Xs)|n) 0 0 et 0 and 01 0 —g | e
0 0 0 € 001 5

conjugated for t; = ln(%). Note that the transformation matrix T' € GL(4, R)
with TAT™! = u(ty) is

1 0 -1 -2
1 1 1 1
T m(2H8) w8y m(3HY5)  m(35)
_ 543V _ 1 5-3v6 3 _ _7_
10 NG 10 2 25
—5+3v/5 1 5+3v5 3 + T
10 V5 10 2 T 25

Now, let I" be an arbitrary lattice in G. By completely solvability and Theorem
3.2.11 (ii), we get the minimal model of M = G/I" as the minimal model M of
the Chevalley-Eilenberg complex (/A g*,9). The latter is given by

0x1 = —@g5, 0xg = 0, 0x3 = —235, 024 = T45, 05 = 0,

which implies b (M) = 2. Further, the minimal model p: (AV,d) — (A g%, 0)
must contain two closed generators v,y which map to x5 and z5. Then we
have p(y1y2) = w95 = —dz; and the minimal model’s construction in the proof
of Theorem 1.1.2 implies that there is another generator u of degree one such
that p(u) = —z; and du = yyys. Since p(uy1) = —x12 and p(uys) = —x15 are
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closed and non-exact, there are no further generators of degree one in V. But
this implies that (u + ¢) y; is closed and non-exact in M for each closed element
c of degree one. Using the notation of Theorem 1.1.5, we have u € N*,y; € V!
and M is not formal. O
Proposition 3.7.2.3. The completely solvable Lie group G237, p > —1, does
not admit a lattice.

Proof. The first half of the proof is taken from [38]|. Assume there is a lattice.
et —tet 0 0
0 et 0 0
Iu(t) = 0 0 e—tp 0
0 0 0 ')
t =t; # 0 and has roots e 1, e e “? and ¢"**?) By Proposition B.6, this

is conjugate to an element of SL(4,7Z) for

can occur if and only if p = —1. Therefore, for the remainder of the proof we
assume p = —1.
et 1 0 0
. 0 et 0 0 . .
The Jordan form of pu(t;) is 0 0 o o |te the characteristic and
0 0 0 ¢

P(X) = (X —e )X —eh)?
= X' 20 4 M) X3 4 (e7 4 M L 4)X? —2(e7 F )X + 1,
m(X) = (X —e ™)X —e")
X3 — (2" + M) X2 4 (e 4 2)X — e,

Since p(ty) is conjugate to an integer matrix, we have P(X),m(X) € Z[X] by
Theorem B.3. This is impossible for t; # 0. U

Proposition 3.7.2.4 ([38|). The completely solvable Lie group G523, does not
admit a lattice.

Proof. 1If the group admits a lattice, there exists t; € R\ {0} such that

e —te ?e‘tl 0
the characteristic polynomial of u(t;) = 0 e _tl_et “0 is a
0 0 e " 0
0 0 0 et
monic integer polynomial with a three-fold root e and a simple root 3. By
Proposition B.6, this is impossible for ¢; # 0. O

Proposition 3.7.2.5. There are q,7 € R with —1 < ¢ <0, ¢ # —%,7’ # 0 such
that G515 7" admits a lattice.
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et 0 0 0
0 et+2qt 0 0
Proof. We have p,.(t) = 0 0 e cos(rt) —e—isin(rt) and
0 0 e %sin(rt) e 9 cos(rt)
as claimed in [38], there exist t; # 0, qo,ro such that g, ., (t1) is conjugate to
1 0 0 1
L 1 2 0 2 . . . . . . _1_2(10,(10’710
A= 013 0 which implies the existence of a lattice I'4 in G5 15 .
0010

If \y = 0,15 < Ay = 3,47 denote the real roots and A3, ~ 1,17 £ ¢0,67 the
non-real roots of Pa(X) = X*—6X3+11X?2—8X +1, then t; = —In()\;) = 1, 86,
do = %(% — 1)~ —0,16 and ry = iarccos (Re(Ag)e®™) ~ 0, 27. O
Remark. If the real number ;- is not rational, then Theorems 3.2.11 (iii) and

3.3.8 enable us to show that the manifold G5 15°%%" /Iy has by = 1 and is
formal.

Proposition 3.7.2.6. There exists r € R\ {0} such that G5 13" admits a lattice.

31 0 0
Proof. Let t; = In(325), r = 7/t; and A = 1000 . Then A
27 0 0 -1 0O
0 0 0 -1
e 0 0 0
el 0 0

is conjugate to pg,(t1) = and this implies the

existence of a lattice.
184-8v/5

1 3 V5 0 0
Note that we have TAT ™! = g, (t;), where T = (1] 3+O\/5 (1) 8 O
0 0 0 1

Remark. Since the abelianisation of the lattice in the last proof is isomorphic
to Z @ Z,2, the constructed solvmanifold has b; = 1.

Proposition 3.7.2.7. G2, admits a lattice.

1 —t 0 0

0 1 0 0

0 0 cos(t) —sin(t)
0 0 sin(t) cos(t)

Proof. We have pu(t) = . Let t; = %, then pu(t;)

100 O
. . 110 0 . . .
is conjugate to 011 -1 |5 there is a lattice. Note that the matrix
001 0
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|
—
o O

1

B} 01 1 € GL(4,R) satisfies TAT ™! = u(ty). O
V3
—1

= oo
o§|w o o
Sl

Remark. The abelianisation of the lattice in the last proof is isomorphic to Z?2,
i.e. the corresponding solvmanifold has b, = 2.

Proposition 3.7.2.8. If there is a lattice T in the Lie group G := G, such
that by(G/T") = 2, then G/T" is not formal.

Proof. By Theorem 3.2.11(i), the natural inclusion of the Chevalley-Eilenberg
complex (A g*,0) — (2(G/T"),d) induces an injection on cohomology. (A g*,0)
is given by

51’1 = —T25, 51’2 = 0, 51’3 = —Ty45, 51’4 = I35, 51’5 =0.
This implies by (A g*,d) = 2, hence H'(G/T',R) = ([z3], [x5]). Therefore
[@s] - HY(G/T,R) + HY(G/T,R) - [w5] = ([z2s]) = ([021]) =0,

and in the Massey product ([z2], [z2], [z5]) = [—215] is no indeterminacy. Since
x15 is closed and not exact, G/I" cannot be formal. ]

Proposition 3.7.2.9. The completely solvable Lie group G;g admits a lattice.
For each lattice the corresponding solvmanifold satisfies by = 1 and is non-formal.

Proof. As we have done above, we suppress the sub- and superscripts. First,

200 -1
. . 1 20 2 D
we follow [38] and consider the matrix A := 01 1 2 which is con-
001 1
e‘tl —tle_tl 0 O
. 0 e h 0 0 -
jugate to u(t;) = 0 0 el _eh for t; = ln(%). This im-
0 0 0 el

plies the existence of a lattice. The transformation matrix 7' € GL(4,R) with
TAT = pu(ty) is

2 _ 1 __2_ 1, 3./5
5v/5 5v/5 5v/5 2 50
36 246 __BH5)? 246
T — 101n(3+/5) 5In(34Y5) 201In(3+/5) 5In(34Y%)
2 1 _2_ 1_ g\/g
5v/5 5v/5 5v/5 2 50
2 —14+v5 —3++/5 _ —14+V5

CsEHAMERE) 5B LERE) 53R I(ERE) 535 n(2HE)
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Let I' be an arbitrary lattice in G. By completely solvability and Theorem
3.2.11 (ii), we get the minimal model of M = G/I" as the minimal model M of
the Chevalley-Eilenberg complex (/A g*,d). The latter is given by

0x1 = —T15 — Tas, 0Ty = —Tas, 0T3 = Tz5 — Tuas, 0T4 = Tys, 0x5 = 0,

which implies b, (M) = 1.
One computes the differential of the non-exact generators of degree two in the
Chevalley-Eilenberg complex as

0x1y = 27125, 0T13 = T1a5 + Tags, O0T14 = Taus,

093 = X245, 0x9y = 0, 0x34 = —2x345.

The minimal model p: (AV,d) — (/A g%, §) must contain three closed generators
Y, 21,22 which map to T5,T14 — T23 and T24.- We see p(yZl) = X145 — T235 is closed
and non-exact, p(yz2) = Ta45 = 093 and the minimal model’s construction in the
proof of Theorem 1.1.2 implies that there is another generator u of degree two
such that p(u) = x93 and du = yzs. Since p(uy) = xa935 is closed and non-exact,
there are no further generators of degree less than or equal to two in V. But this
implies that (u 4+ ¢)y is closed and non-exact in M for each closed element ¢ of
degree two. Using the notation of Theorem 1.1.5, we have u € N2,y € V! and
M is not formal. O

Proposition 3.7.2.10 (|38]). G5 1, ¢ # 0, does not admit a lattice.

Proof. 1f the group admits a lattice, there exists t; € R\{0} such that the char-

€_t1 —tle_tl 0 0
. . 0 e it 0 0 .
acteristic polynomial of p(t;) = 0 0 et cos(tg) —et sin(trq) is
0 0 et sin(t1q) €™ cos(tiq)
a monic integer polynomial with simple roots €' (cos(t;q)+i sin(¢1¢)) and a double
root e . By Proposition B.6, this is impossible for ¢; # 0. O

Proposition 3.7.2.11. There are p,r € R, p # 0, r ¢ {0,£1}, such that GE"
admits a lattice.

2 0 0 —-11
. 1 20 -9 . .
Proof. We follow [38] and consider A := 011 -1 | A is conjugate to
001 1
e P cos(ty) —e MPsin(t) 0 0
e "Pgin(ty) e P cos(t) 0 0

Hit) = 0 0 e"'P cos(tyr) —e"Psin(tyr) for certain

0 0 e"Psin(tyr)  e"P cos(tyr)
t1,p,r # 0, i.e. there is a lattice.
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If M2 ~ 0,306 £1¢0,025 and A34 ~ 2,694 £ 71,83 denote the roots of
Po(X) = X* —6X®+14X? — 7X + 1, one has t;p = —In(|\;|) & 1,181, hence
t1 = arccos (Re(\)e"?) &~ 0,062, p ~ 14, 361. t;7r = arccos (Re(A3)e"?) ~ 0,597
implies r ~ 7, 259. U

Remark. Since the abelianisation of the lattice in the last proof is isomorphic
to Z & Zs, the corresponding solvmanifold has b; = 1.

Proposition 3.7.2.12. There exists p € R\ {0} such that GETP*" admits a
lattice.

0 -1 0 O
o 1y (3£V5 — — I =30 0
Proof. Let p := —In(*5>), t; := m and A := 00 o -1 | Then
0O 0 1 =3
e "Pcos(ty) —e MPsin(t) 0 0
| e "Psin(ty) e P cos(ty) 0 0 .
ult) = 0 0 eh? cos(kt) —ePsin(dty) | O OO
0 0 e"Psin(+ty)  e"'Pcos(tty)
jugate to A and this implies the existence of a lattice. Note that we have
1 5-3v5 0 0
75 10
0 0 e
-1 _ - o 5
TAT = p(ty) with T := 1 osaG 0 : O
5 10
0 0 _% 5+1;J,0\/5

Remark. The abelianisation of the lattice in the last proof is Z @ Z3?, i.e. the
corresponding solvmanifold has b; = 1.

Proposition 3.7.2.13. There exists 7 € R\ {0, 1} such that GYY7 admits a
lattice.

cos(t) sin(t) 0 0
sin(t) cos(t 0 0 -
Proof. Let r € {2,3}. Then p(t) = o() 0() cos(tr) sin(tr) | *°
0 0  sin(tr) cos(tr)

an integer matrix for ¢ = 7. This implies the existence of a lattice.

Remark. If we chose in the last proof r = 2, then the corresponding solvmanifold
has by = 3. For »r = 3 we obtain a solvmanifold with b; = 1.

Proposition 3.7.2.14. G2V admits a lattice.

cos(t) sin(t) 0
sin(t) cos(t) 0
0 0  cos(£t) sin(
0 0  sin(£t) cos(
t = w. This implies the existence of a lattice.

Proof. u(t) = is an integer matrix for
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Remark. The first Betti number of the solvmanifold induced by the lattice of
the last proof equals one.

Proposition 3.7.2.15. GY 5 admits a lattice.

Proof. Again, we follow [38]. The matrix is conjugate to

o~ oo
—_ o oo
I

2
1
0
0
cos(t;) —sin(ty) —tycos(ty) tysin(ty)
sin(t;) cos(ty) —tysin(ty) —t1cos(ty)

_ 1 o o
wu(ty) = 0 0 cos(t) _sin(ty) for t; = . This implies
0 0 sin(ty) cos(ty)
the existence of a lattice.
U g L
3V3 V3 V3
B 0 0 0 1 GL(AR) is th ‘ :

Note, T' = N - € GL(4,R) is the transformation
T

matrix with TAT ™1 = u(ty). O

Remark. The abelianisation of the lattice in the last proof is isomorphic to Z,
i.e. the corresponding solvmanifold has b; = 1.

Algebras with nilradical n := g31D g1 = <X1, e ,X4 | [XQ, Xg] = X1>

We now regard the unimodular almost-nilpotent Lie groups G5; with nilradical
N :=U3(R) x R, i.e. i € {19,20,23,25,26,28}. We can identify N with R* as a
manifold and the group law given by

(a,bye,r) - (z,y,z,w)=(a+x+bz,b+y,c+z,r+w).

The Lie algebras of the unimodular Lie groups G5, = R x,, N with nilradical
N are listed in Table A.5. We have p;(t) = exp™ o exp®®™(tad(X5))olog”, where
X5 depends on 1.

Assume there is a lattice I' in G5;. By Corollary 3.3.5, there are t; # 0 and
an inner automorphism I,,, of N such that v; := p;(t1) oI, v;' € A(N) preserve

niy “q

the lattice 'y :=T'N N in N. For ny = (a,b,c,r) one calculates
I, (z,y,z,w) = (x+bz—yc,y, z, w). (3.8)

Iyo:=Tn NN = Zis alattice in N := [N, N] = {(2,0,0,0) |z € R} =R by
Theorem 3.1.4 and since v;(Inv), v; '(Dnv) C T, we have v4|r,, € Aut(Z). This
implies v;|r,, = #id and hence j;(t1)|;n,n) = %id (a cause of (3.8) and the shape
of [N, N]). Moreover, we have [n,n] = (X;) and since exp® is the identity,

tid = 1;(t1) v, = exp™™ (¢ ad(X5) o) |-
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(Note that exp™([n,n]) = [N, N] by |76, Theorem 3.6.2].) Therefore, ¢;[X;5, X;]
has no component in (X;) and since ¢; # 0, this means that [X;, X;5] has no
component in X;-direction. The list of Lie algebras in Table A.5 implies:

Proposition 3.7.2.16. The only connected and simply-connected solvable Lie
groups with nilradical Us(R) x R that can contain a lattice are G5 5 and Gygg . O

Proposition 3.7.2.17. G35, admits a lattice. For each lattice the corresponding
solvmanifold admits a contact form, is formal and has by = 2.

Proof. Using Theorem 3.1.1, one shows that
20 4+ 9v/5
Y1 o= (77 7070)7
9+4v5
181+ 815 18+8V5 2

= 5 ) 70 )
2 TRV AW Ay AL
181 + 815
V3 = (7717170)7
47 4+ 215
20 + 9v/5
74 = (070707_ 3 \/g )
(9+4V5) In(323)

generate a lattice I'y in N with [vs, 73] = 71 and 7,74 central.

A short calculation yields that j(t) ((9:, v, 2, w)) = (x—tw, ey, €'z, w) defines
a one-parameter group in A(NN). Moreover, for t; = ln(%) holds u(t1) (1) = 71,
pt)(v2) = 3, p(t1)(v3) = 75 '93 and pu(t)(va) = 17

This implies the existence of a lattice in G := G55, = R x, N.

Let I' be an arbitrary lattice in G. By completely solvability and Theorem
3.2.11 (ii), we get the minimal model of M = G/I" as the minimal model M of
the Chevalley-Eilenberg complex (A g*,9). The latter is given by

0x1 = —T93 — Tus, 0Ty = —Tas, 0T3 = T35, 04 = 0x5 = 0,

which implies b1 (M) = 2. Moreover, z; defines a left-invariant contact form on
G/T.

One computes the differential of the non-exact generators of degree two in the
Chevalley-Eilenberg complex as

0x12 = T195 — Toas, OT13 = —T135 — T3as, OT14 = —T34,
0x15 = —Z235, 093 = 0, 0x9y = X245,
0T34 = —Taas, 045 = 0.

The minimal model p: (AV,d) — (A g*,9) must contain two closed generators
Y1, Y2 which map to x4 and x5. We see p(y1y2) = 45 is closed and non-exact.
Since by(G/I') = 1, the minimal model’s construction in the proof of Theorem
1.1.2 implies that there are no further generators of degree less than or equal to
two in V. This implies that G/T" is formal. O
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Proposition 3.7.2.18. GY5, admits a lattice for e = +1. For each lattice the
corresponding solvmanifold s contact and has by > 2.

Proof. One calculates that ©: R — A(N) defined by

p(t)((z,y, 2, w))
= (2 + hy(y, 2) — etw, cos(tm) y — sin(tr) 2, sin(tr) y + cos(tm) z, w),
where h(y,z) = 1 sin(tm) <cos(t7r) (y* — 2%) — QSin(tW)yz), is a one-parameter
group.
Then we have G := ng§6 =Rx,Nand Zx,{(z,y,2,w) € N|z,y,z,w € Z}
is a lattice in G since pu(1)((z,y, z,w)) = (z — ew, —y, —2z,w).
Using d.(u(t)) = log™ opu(t) o exp”, we obtain the Lie algebra g of G as

(X1, X5 | [Xo, Xa] = Xa, [Xo, X5] = X5, [X5, X5] = —Xo, [Xy, Xs] = eX).

Denote {z1,...,x5} the basis of g* which is dual to {X3,..., X5}, i.e. the x; are
left-invariant 1-forms on GG. One calculates that x; is a left-invariant contact form
on G, so it descends to a contact form on the corresponding solvmanifold.

The statement about the first Betti number follows from Theorem 3.2.11(i). O

Remark. Since the abelianisation of the lattice in the last proof is isomorphic
to Z* @ 73, the corresponding solvmanifold has b; = 2.

Algebras with nilradical O41 = <X1, c. ,X4 | [XQ, X4] = Xl; [Xg, X4] = X2>

Proposition 3.7.2.19. No connected and simply-connected solvable Lie group
G5, with nilradical N := G4, admits a lattice.

Proof. There is only one unimodular connected and simply-connected solvable

_a
Lie group with nilradical G4, namely the completely solvable group G := Gf 3.
We show that it admits no lattice.
The group N is R* as a manifold with multiplication given by

1
(a,b,c,r) - (2,y,z,w) = (a+x+wb+§wzc, b+y+we,c+z,r+w),

and one calculates for ny = (a, b, c,r)

2 L,
c—ry—rchrir Z,y+wec—rz, 2z, w).

1
I (z,y,z,w) = (x + wb+ S
Let G = R x, N, where p(t) = exp” o exp®(tad(X5)|,) o log" and assume
there is a lattice I' in G. By Corollary 3.3.5, there are t; # 0 and n; € N such
that v := p(ty) o I,,, € A(N) preserves the lattice 'y :=T'N N in N.
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Ly := N'NTy is a lattice in N’ := [N, N| = {(z,9,0,0) € N |z,y € R} = R?
by Theorem 3.1.4, and since v(N') C N’, this lattice is preserved by v|y/. This
and eXpR2 = id imply

1
i.e. ad(X5)|mun has trace equal to zero. This and [n,n] = (X, X, |) contradicts
_a
05 50, See Table A.6. .

Non-almost nilpotent algebras

Now, there remain two unimodular connected and simply-connected solvable Lie
groups in dimension five, namely G;3; ' and G525. Unfortunately, we do not
know whether the former group admits a lattice or not. Note, Harshavardhan’s
argumentation in |38, p. 33| is not sufficient.

Remark. If the completely solvable Lie group G;;z{l admits a lattice, one easily
proves that the corresponding solvmanifold admits a contact form (since G 35 |
possesses the left-invariant contact form z; 4 25 4 x5 with z; dual to X; € g5 55

as in Table A.7), is formal and has b; = 2.

Remark. In April 2009, A. Diatta and B. Foreman proved that G;ég_l possesses
a lattice.

Proposition 3.7.2.20. G;?;;] contains a lattice. For each lattice the correspond-
ing solvmanifold is contact and has by > 2.

Proof. A lattice and a contact form were constructed by Geiges in [32]. One
has the left-invariant contact form z; + x5 on the Lie group, where x, x5 are dual
to the left-invariant vector fields as in Table A.7. Hence the form descends to
each compact quotient by a discrete subgroup.

The statement about the first Betti number follows from Theorem 3.2.11(i). O

Conclusion

We have seen that each connected and simply-connected 5-dimensional solvable
Lie group admits a lattice if it is nilpotent or decomposable with the exception
of G4 x R. If an indecomposable non-nilpotent group G; gives rise to a solv-
manifold it is contained in Table 3.3. Recall, by Theorem 3.2.11, we always have
a lower bound for the solvmanifold’s Betti numbers and in some cases the exact
value. These can be read of in the second and the third column. The last column
refers to the examples that we have constructed above. “yes” means that we have
such for certain parameters that satisfy the conditions of the column “Comment”.
Except for : = 33 we have examples for all possible values of 7.
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Table 3.3: 5-dimensional indecomposable non-nilmanifolds

‘ ‘ by ‘ by ‘ formal ‘ Comment ‘ Example ‘
Gya” 1] 0 yes | —l<r<p<g<l,| 3721 (i)
pqr # 0,
p+q+r=-—1

GEg— | 1 ] 2 ] wyes p=—qe0,1[ | 3721 (i)

Gsz ' [ 1 ] 4 ] yes 3.7.2.1 (iii)
Gss 213 | no 37.2.2
G " [ >1[>0] 7 ge[—LON\{L}, | 3725

r#0
G [>1]>2] 7 r£0 3726
Gy | >2]=>3] 7 3727
5.15 T | 2 | no 3729
GEPT I >11>0] 7 p#0, r ¢ {0,£1} | 3.7.2.11
I ER R p#0 3.7.2.12
G [>1]>2] 7 r ¢ {0, +1} 3.7.2.13
GYWFE T >1 >4 7 3.7.2.14
G | >1]>2] 7 37.2.15
G530 2 | 1 | yes 37.2.17
T | >2]>1] 7 3.7.2.18
G;é{l 2 1 yes no

Gy | >2|>1] 7 3.7.2.20

Assuming that there is a lattice in one the non-completely solvable Lie groups
Gs;, i.e. i € {13,14,17,18,26,35}, such that the inequalities in the table on
page 64 are equalities, then one can calculate that such quotients are formal for
i € {13,17,26,35} and not formal for ¢ € {14,18}. The assumptions about the
Betti numbers are needed to ensure that the Lie algebra cohomology is isomorphic
to the solvmanifold’s cohomology.

3.7.3 Contact structures

Some of the connected and simply-connected five-dimensional solvable Lie groups
G5.; which admit a lattice I' possess a left-invariant contact form. Obviously, it
also defines a contact form on the corresponding solvmanifold. By this way,
we showed that the manifolds Gj,;/I" for i € {4,5,6} and quotients of almost
nilpotent groups with non-abelian nilradical (i.e. i > 19) by lattices are contact.

But R?, U3(R) x R?, G4 x R and G5; do not have a left-invariant contact
form for i € {1,2,3,7,...,18}, see e.g. [17]. For some of the nilmanifolds, we can
provide a contact structure by another approach.
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Theorem 3.7.3.1. Let G € {R5 Uz(R) x R, G4y xR, G5.1,G53} and T a lattice
G. Then G/I' admits a contact structure.

Proof. For G chosen as in the theorem, the dimension of the center is greater
than or equal to two. Therefore, we can find a two-dimensional closed normal
subgroup that lies in the center such that its intersection with I' is a lattice in it.
By Theorem 3.2.6, G/T" has the structure of a principal 7%-bundle over a three
dimensional closed orientable manifold. Then the following result of Lutz implies
the claim. 0

Theorem 3.7.3.2 (|51]). The total space of a principal T*-bundle over a closed
orientable 3-manifold admits a contact form. O

Unfortunately, we did not find a contact structure on the manifold of Propo-
sition 3.7.2.9. If such exists, this yields a five-dimensional non-formal contact
solvmanifold with b; = 1.

3.8 Six-dimensional solvmanifolds

There are 164 types of connected and simply-connected indecomposable solv-
able Lie groups in dimension six, most of them depending on parameters. For
classifying six-dimensional solvmanifolds, we restrict ourselves to the following

types:
(a) nilmanifolds,

(b) symplectic solvmanifolds that are quotients of indecomposable groups which
are not nilpotent,

(c) products of lower-dimensional solvmanifolds.

Although we have to make some restrictions to get a manageable number of
cases, one certainly has to consider types (a) and (c¢). Concerning the third type,
the reader can even ask the legitimate question why we do not consider arbitrary
lattices in products of lower dimensional solvable Lie groups G4, Gs, instead of
direct products I'y X I's of lattices I'; in the factors GG;. The reason is that we have
no tool to construct arbitrary lattices or disprove their existence, unless we can
ensure that they contain the semidirect factor Z. (When we wanted to investigate
G535, we already had this problem.)

The further restriction in (b) is justified by the large number of indecompos-
able non-nilpotent solvable Lie algebras in dimension six: There are 140 types of
it. The author has decided to consider the most interesting among them. Since
we are not able to refute a symplectic form’s existence in the non-completely
solvable case, we shall partly make even more restrictions.
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3.8.1 Nilmanifolds

There are 34 isomorphism classes of nilpotent Lie algebras in dimension six.
Each of them possesses a basis with rational structure constants and therefore
determines a nilmanifold. They are listed on page 67 in Table 3.4 which is taken
from [68]. The corresponding Lie algebras are listed in Appendix A. Among the
34 classes of nilmanifolds, there are 26 which admit a symplectic form.

Recall that a nilmanifold is formal or Kéhlerian if and only if the correspond-
ing Lie algebra is abelian.

3.8.2 Candidates for the existence of lattices

Among the 61 types of indecomposable unimodular almost nilpotent Lie algebras
in dimension six that are listed in Tables A.10 — A.23, there are some that cannot
be the Lie algebra of a connected and simply-connected Lie group which admits
a lattice.

Instead of the small German letters for the Lie algebras in the mentioned
tables, we use again capital Latin letters with the same subscripts for the corre-
sponding connected and simply-connected Lie groups. If any, we chose the same
designation for the parameters a, b, ¢, h, s, € of Gg; as for their Lie algebras.

Proposition 3.8.2.1. Let i € {13,...,38}, i.e. Nil(Gg;) = U3(R) x R Then
it 1s necessary for Gg; to contain a lattice that one of the following conditions
holds:

1=13,a=—-b#0,h=—1; =15 1=18,a = —1;
i=21,a=0; i=23,a=0; i=25b=0;

i = 26: i =29.b=0: i=32a=c=0<h:

i =233,a=0; i =34,a=0; i=35,a=—-b+#0,c=0;
1= 36,a = 0; 1=37,a=0,s#0; i=38.

Proof. This can be seen analogous as in the proof of Proposition 3.7.2.16.
Denote {Xj,...,Xg} the basis used for the description of the Lie algebra in
Tabels A.12 — A.14. Then the existence of a lattice implies that [ X4, X;] has no
component in X;-direction and this yields the claim. 0

Proposition 3.8.2.2. Let i € {39,...,47}, i.e. the nilradical of Gg; is G41 X R.
If Gg.; admits a lattice, then holds i = 39 A h = —3 or i = 40.

Proof. Use the designation X, ..., Xs as above. Then (X7, X5) is the commu-
tator of the nilradical of gg,;. Analogous as in the proof of Proposition 3.7.2.19,
one shows that ad(Xg)|(x, x,) has trace equal to zero. This is only satisfied for
1=39Ah=-3ori=140. O
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Table 3.4: 6-dimensional nilmanifolds

b (G/D) | bs(G/T) |

Comment

| o |

|
‘ 6 ‘ 15 ‘ Torus, symplectic ‘ 69, ‘
| 5 | 11 | symplectic | gs13g |
| 5 | 9 | notsymplectic | gsa® g |
| 4 | 9 | symplectic | gs1®gr |

4 8 symplectic 2031

4 8 symplectic g6.N4

4 8 symplectic g6.N5

4 7 symplectic U055 D o

4 7 symplectic 941 D 201
| 4 | 6 | notsymplectic | goni2 |
‘ 3 ‘ 8 ‘ symplectic ‘ g6.N3 ‘

3 6 symplectic g6.N1

3 6 symplectic J6.N6

3 6 symplectic J6.N7

3 D symplectic 952 D g1

3 5 not symplectic 053D g1

3 d symplectic g5.6 D g1

3 5 symplectic 96.N8

3 5 symplectic 96.N9

3 5 symplectic g6.N10

3 5 not symplectic 96.N13

3 5 not symplectic 96 N4

3 5 not symplectic 95 N14

3 5 symplectic g6.N15

3 5 symplectic 96.N17
HEEE symplectic | genie

2 4 symplectic g6.N11

2 4 symplectic 96.n18

2 4 symplectic O N1s

2 3 symplectic g6.N2

2 3 symplectic 96.N19

2 3 symplectic 96.N20

2 2 not symplectic g6.N21

2 2 not symplectic 96.N22

67
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Proposition 3.8.2.3.

(i) Let i € {54,...,70}, i.e. the nilradical of Ge; is Gs1. If Gg; admits a
lattice, then holds i =54Nl=—1,1=063,i=65A1l=0o0ri=70Ap=0.

(i) No connected and simply-connected almost nilpotent Lie group with nilrad-
ical Gso or Gss admits a lattice. O

Proof. This follows in the same manner as the last proposition. The trace of
ad(Xg) restricted to the commutator of the nilradical must be zero. O

3.8.3 Symplectic solvmanifolds whose first Betti number
equals one

If we are looking for solvmanifolds with b; = 1, it is necessary that the corre-
sponding Lie algebra is unimodular, almost nilpotent and has b; = 1 itself. Note
that the latter forces the algebra to be indecomposable. In Tables A.27 — A.29
on pages 115 — 117 we have listed all possible values that can arise as b; for
the classes of unimodular non-nilpotent solvable indecomposable Lie algebras in
dimension six.

Since we are mainly interested in symplectic 6-manifolds, we now investigate
which Lie algebras contained in Tables A.10 — A.23 that satisfy b; = 1 are co-
homologically symplectic, i.e. there is a closed element w € /\2 g* such that w? is
not exact.

Note, if a unimodular Lie algebra is cohomologically symplectic, then each
compact quotient of the corresponding Lie group by a lattice is symplectic. If
the Lie algebra is completely solvable, this is even necessary for the quotient to
be symplectic.

Proposition 3.8.3.1. Let gg; be a unimodular almost-nilpotent Lie algebra with
bi1(ge;) = 1. Then we have:
G6.i 18 cohomologically symplectic if and only if i € {15, 38, 78}.

Proof. For i € {15,38,78} one computes all symplectic forms up to exact
summands as

i=15: w=(A+pu)re+ ATos — ptx3s, A\, pp€R\{O}N# —p,
i =38: w=ATig+ (L Tos+ 5 Tos — 5 Taa + prazs, A, p € R AF0,—3N3 £ 2)p%,
i:78:w:)\x14+)\x26+)\x35, )\ER\{O}

If i ¢ {15,38,78}, then the conditions on the parameters of gg; to ensure its
unimodularity and by (ge;) = 1 imply that there are no closed elements of A\” g5,
without exact summands which contain one of the elements x1¢, T2g, 36, T4 O
xs6. Therefore, gg; cannot be cohomologically symplectic. L]
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Remark. We give an explicit example of the argumentation in the last proof for
1=2:

g6.2 depends on three parameters a,c,d € R with 0 < |d| < |¢| < 1 and the
brackets are given in Table A.11 as

(X1, X6l =a Xy, [Xo,Xg]l=X1+aXy, [X; Xe=Xs,
(X4, Xe] = c Xy,  [X5,Xe] =dXs.

The condition of unimodularity implies 2a 4+ ¢ + d = —1. Moreover, if first the
Betti number equals one, we see in Tabular A.27 that a # 0.
The Chevalley-Eilenberg complex is given by

0xy = —axis — Tas, 0Ty = —aTos, OT3= —T36,
51’4 = —C Ty, 51’5 = —dl'56, 51’6 =0

and since a, C, d 7é 0, T26,L36, L46, L5 ArC exact. MOI"GOVGI", T16 = 5(—%1’1 + a%l’g)
is exact, too. This implies the claim.

We now examine the three Lie groups that have cohomologically symplectic
Lie algebras.

The next theorem was announced in Chapter 2. It provides an example of
a symplectic non-formal 6-manifold with b; = 1. Since it is a solvmanifold, this
manifold is symplectically aspherical. Hence, we found an example for which
Kedra, Rudyak and Tralle looked in [48, Remark 6.5].

Theorem 3.8.3.2.
(i) The completely solvable Lie group Gg 15 contains a lattice.

(i) If T is any lattice in G = Gg1s, then M = G/T is a symplectic and
non-formal manifold with by(M) =1 and by(M) = 2.

Proof. ad (i): Let N = Us(R) x R? denote the nilradical of G. We can identify
N with R® as a manifold and the multiplication given by

(a,b,c,r,s) - (z,y,z,v,w) = (a+x+bz,b+y,c+z,r+v,s+w),

i.e. [N, N] = {(2,0,0,0,0)|z € R} 2R and N := N/[N, N] = R
By definition of G, we have G = R x, N, where

0o 0 0 0 O
0 -1 0 0 0
Vien p(t) =expNoexp®™(t| 0 0 1 0 0 [)olog?, (3.9)
0 -1 0 -1 0
0 0 -1 0 1
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S v

—
-1 0 0 O
0 1 0 O
— _ GL(4,R)
,u(t)((y,z,v,w)) = ©Xp (t _1 0 _1 0 )
1
0

One calculates that i: R — A(N) given by

Vier Vagevwen A2y, 20,w)) = (2,7 ((y, 2, 0,w)))  (3.10)

is a one-parameter group, and since the derivations of (3.9) and (3.10) in zero are
equal, we have u = p.

21 00
Let t; = In(325), then 7u(t;) i ueate to A = 1100 Th
et t; = In(=5%), then 7i(t;) is conjugate to A := 5 1 9 1 o
1 111
transformation matrix 7' € GL(4,R) with TAT ! = 7(t,) is
2(2++/5)
1 T 0 0
1 1+v5 0 0
3+v5
I= 2 2(2+V/5) In(345)
0 0 In(z2e) e
2 (1+v5) In(3£12)
0 0 1n(3+\/5) — T 2

Denote by {b1,...,bs} the basis of R* for which 7i(#,) is represented by A, i.e. b,
is the 7-th column of T'. One calculates

biiby — bisby = V5,
bitbjs — bigbjy = 0 fori < j,(4,7) # (1,2).
This implies that we have for 7o := (v/5,0g1), v; := (big, b;) € N with arbitrary
bipeR,i=1,...,4,
[v1,%2] =70, [71,73] = 1,74l = [es 18] = [v2,74] = [v3,74] = en.

We can choose the b,y such that the following equations hold:
w(t)(v) = o,

uEh;E%; = Vo i T
u(t1)(y2) = Y12 V3 Va
ultn)(vs) = 2 (311
pt)(va) = Y3 Ya
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2(1+v5)
210 1+ N
1+
Note that (3.11) leads to the equation (id — 7A) b20 = 3+v5
30 0
bao 0
which has the (unique) solution by = 3+ \/5, byy = 171;“35\\//—_ and bsg = by = 0.

We claim that t,Z x, (exp™ (Spanglog" ({70, ...,7}))) defines a lattice in
G:

It suffices to show that (exp™ (Spanylog"({7o,...,74}))) defines a lattice
in IV, so let us prove this assertion. There exist uniquely Yp,...,Ys € n with
expV(Y;) = 7; for i € {0,...,4}. If we prove that ) = {Y,,...,Y,} is a ba-
sis of n with rational structure constants, then Theorem 3.1.1 (i) implies that
(exp” (SpanyY))) is a lattice in N.

We identify n with R® and brackets given by the Campbell-Hausdorff formula,
see e.g. [76, Chapter 2.15|. Since n is 2-step nilpotent (and exp? is a diffeomor-
phism), the formula yields for all VIV €n

log™ (expN(V) expN(W)) V4+W+ = L [V w].

Since U3(R) can be considered as a group of matrices, one can easily calculate
its exponential map. Then, its knowledge implies that the exponential map resp.
the logarithm of N is given by

exp™ ((z, y, 2, v, w)) = (x + 3y, Y, 2, v, W),
log™ ((x, Y, 2, U, w)) = (x — %yz, Y, Z, U, W),

and we obtain Yo = (v/5,08:), ¥i = (bio — 4,b1), Yo = (ban + Z320E5) py),
Y5 =(0,b3), Y5 = (0,by), [Y1,Ys] =Yy The other brackets vanish.

ad (ii): Let I' be an arbitrary lattice in G. By completely solvability and
Theorem 3.2.11 (ii), we get the minimal model of M = G/I" as the minimal
model M of the Chevalley-Eilenberg complex (/A g*,9). The latter has the closed
generator xg and the non-closed generators satisfy

dxy = —T23, 0xg = —96, 0T3 = T36, 0Ty = —Tog — X416, 0xs = —T36 + Ts6,

which implies by (M) = 1.
One computes the differential of the non-exact generators of degree two in the
Chevalley-Eilenberg complex as

0x12 = T126, 0T13 = —T136, OT14 = T126 + T146 — T234,
015 = T136 — T156 — T235, 0116 = —T236, 0Ty = 22246,
095 = T236, 0T34 = —T236, dxgs = —2T356,

045 = To56 — T346,
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The minimal model p: (AV,d) — (A g*,0) must contain three closed gen-
erators v, 21, zo which map to xg, 16 + 95 and x16 — 234. p(yz1) = 256 and
p(yz) = —w346 are closed and not exact. But in the generation of y, z; and 2, is
one (and up to a scalar only one) element that maps onto an exact form, namely
p(y(z1+ 22)) = 0x45. The minimal model’s construction in the proof of Theorem
1.1.2 implies that there is another generator u of degree two such that p(u) = x45
and du = y(z1 + 22). Since p(yu) = w456 is closed and non-exact, there are no
further generators of degree less than or equal to two in V. But this implies for
each closed element c of degree two that y (u + ¢) is closed and non-exact in M.
Using the notation of Theorem 1.1.5, we have u € N2,y € V! and M is not
formal.

Finally, the existence of a symplectic form on G/I" follows from Proposition
3.8.3.1. 0

Proposition 3.8.3.3.

(i) Each quotient of the Lie group G2 s by a lattice is symplectic. G 55 contains
a lattice T with by (GY 35/T) = 1.

(ii) If the Lie group G4 contains a lattice T such that M = GY 45/T satis-
fies by(M) = 1 and be(M) = 2, then M is a symplectic and non-formal
manifold.

Proof. The proof is similar to that of the last theorem. Therefore, we just
give a sketch of the proof.

ad (i): The existence of a symplectic form on each quotient of G := G{ 55 by
a lattice follows from Proposition 3.8.3.1.

The nilradical N of G is the same as in the proof of Theorem 3.8.3.2, so we
have [N, N] =R and N = N/[N,N] =R* If 7i(t): N — N is defined by

0 1 0 0 y
-1 0 0 0 z
- _ GL(4,R)
u(t)((y,z,v,w)) - eXp (t _1 0 O 1 ) v
0 -1 -1 0 w
cos(t) sin(t) 0 0 y
B —sin(t)  cos(t) 0 0 z
N —tcos(t) —tsin(t) cos(t) sin(t) v |’
( w

tsin(t) —tcos(t) —sin(t) cos(t)

one calculates that u: R — A(N) given by

V3

sin(t) cos(t) 2 _ 2y 4 t= (v = 2);

u(t) ((x, Y, 2,0, w)) = (93 — sin®(t)yz + 5

1) ((y, 2, v,0)) )
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0o 0 0 0 0
0 -1 0 0 O
is a one-parameter group with d.(u(t)) =exp®™(¢ [ 0 0 1 0 0 |),ie
0O -1 0 -1 0
0 0 -1 0 1
= ad(Xs)|n

G =R x, N. (Here Xg is chosen as in the last line of Table A.14 on page 110.)
For t; := 5 we have

3 V3, ., s
t ) = I o - P - 7_t y %y Uy )
u(t) (g, 2, 0,w) = (v = Jyz+ (" —y) + 8\/§(y 2), i) ((y, 2, v,w)))
and in order to construct a lattice in G, it is enough to construct a lattice in N
-1 -3 0 0
. _ . . 12 0 0
that is preserved by u(t;). f(t1) is conjugate to A := 9 _3 _1 _3
11 1 2
and the transformation matrix 7' € GL(4,R) with TAT ' = 7(t;) is
Boog 0 0
_3 _8
=10 o ER. 3
v
0 0 0 1

Denote by {by,...,bs} the basis of R* for which 7i(t,) is represented by A, i.e. b;
is the i-th column of 7. One calculates

—6v/3
b11b22 - b12b21 = )

T2

bilbjg — bigbjl = 0 fori< Js (Z,j) % (1,2)

This implies that we have for Yo = (bllbgg — 612621, 0R4)7 Yi ‘= (bio, bz) € N with
arbitrary b € R, e =1,...,4,

[71772] = 70, [%ﬁ:’)] = [71,74] = [727%)] = [72,%] = [73,74] = €EN-

and

1488v/3+ 7237 —19/3n2+473 b20 __ 2736v/34216V37—25/372+1273
, =

If we set by = 58 58

b30 = b40 = 0, we obtain

p(t)(v) = 0,

w(t)(m) = e B
p(t)(y2) = % % ot o
p(t)(vs) = Y5l
(1) (7a) 2
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Then (exp” (Spany, log™ ({70, . . - ,71}))) is a lattice in N. This can be seen by
a similar computation as in the proof of the last theorem. Finally, one checks
that the abelianisation of this lattice is isomorphic to Z, hence the corresponding
solvmanifold has b; = 1.

ad (ii): Let I' be a lattice in G such that b;(G/I') =1 and by(G/T") = 2.

The Chevalley-Eilenberg complex (/\ g*, ) has the closed generator xg and §
is given on the non-closed generators by

dxy = —Z23, 0xg = x36, 0x3 = —6, 0Ty = —Tp + T56, 0xs = —T36 — Tag,

which implies HY(A g*,0) = ([x¢]).
One computes the differential of the non-exact generators of degree two in the
Chevalley-Eilenberg complex as

0x19 = —T136, 0x13 = X126,

0T14 = T126 — Ti56 — T234,
016 = —Ta36,

025 = Ta36 + Ta46 — T356,
0T35 = Tos6 + T346,

015 = T136 + T1a6 — T35,
0Ty = —Ta56 — T346,

034 = —Ta36 + Toss — T356,
045 = Tos6 — T346,

i.e. H2(A g*, 5) = <[[L’16 + %1'25 - %1'34], [1'24 + $35]>.

This implies that G/T" and (/\ g%, §) have the same Betti numbers and there-
fore, by Theorem 3.2.11, they share their minimal model.

The minimal model p: (A V,d) — (A g*,0) must contain three closed genera-
tors Y, Z1, 22 which map to T, T16+ %l’g5 — %JZ‘34 and Tog + T35. p(yZQ) = To46 + T356
is closed and not exact. But p(yz1) = %(@56 — T346) = %5x45 is exact. Hence the
minimal model’s construction in the proof of Theorem 1.1.2 implies that there is
another generator u of degree two such that p(u) = %:1:45 and du = yz;. Since
plyu) = %x456 is closed and non-exact, there are no further generators of degree
less than or equal to two in V. Using the notation of Theorem 1.1.5, we have
u € N2y eV (u+c)yis closed and not exact for each ¢ € C* and (AV,d) is
not formal.

Finally, the existence of a symplectic form on G/T" follows from Proposition
3.8.3.1. O

Theorem 3.8.3.4.
(i) The completely solvable Lie group G := Ggr1s possesses a lattice.

(i1) For each lattice the corresponding quotient is a symplectic and formal mani-

fold with by = by = 1.

Proof. ad (i): By definition, we have G = R x, N with N = G535 and
p(t) = exp oexp®™(tad(Xg)|s) o log”", where {X1,..., Xs} denotes a basis of
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g as in the second row of Table A.20. Note that {X,..., X5} is a basis for the
nilradical n. One computes

et 0 0 0 0
0 1 0 0 0
(1), = de(p(t) = exp®™(tad(Xe)s) = 0 0 et —tet 0 (3.12)
0 0 O et 0
0 0 O 0 et

Using
n = (Xs5) Xaagxs) ((X1) @ (Xa, X3, Xy | [Xo, Xu] = X3))

with ad(X5)(X2) = —Xl, ad(X5)(X4) = —XQ, ad(X5)(X1) = ad(X5)(X3) =0
and
(Xa, X3, Xy | [Xo, Xy] = X3) & g31,

we can determine the Lie group V.
As a smooth manifold N equals R®, and the multiplication is given by

(av b> G, S) ' (l’, Y,%,0, w)
2 2

rw réw
= (a+x+bw+7,b+y+rw,c+z+bv+7+rvw,r+v,S+w).

Now, Theorem 3.3.2 enables us to compute the exponential map of N as

exp™ (2X) + yXo + 2 X5 + vX4 + wX5)
2 2
w

IS N g TS R
- 2 6 7y 27 2 3 9 ) I
and therefore, we also obtain the logarithm of N
lOgN ((xvya Z,'U,U]))
2 2
yw  vw VW yv o vw
= -+ —)X ——)X - - — )X X X;.
(z 5 12) 1+ (y 2) 2+ (2 5 12) 3+ vXy +wXs

Finally, a short computation shows that (3.12) implies
:u(t) ((I’, Yy,z,0, U))) = (et«r, Yy, e_t(Z — tw), e_t’U, etw).

Let t; := ln(3+—2\/5), by == —1?\1/5 and consider for t € R the automorphisms
I(t): N — N given by

1) (2,9, 2,0, )
= (0,tby,0,0,0)(z,y, z,v,w)(0,tby,0,0,0) ™" = (2 + thow, y, z + thov, v, w),
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and v(t) := p(t) o I(t): N — N. It is easy to see that v: R — A(N) is a
one-parameter group in V.

We shall show that there exists a lattice I'y in N preserved by v(t;), and this
then implies the existence of a lattice in Gg.7g, namely 17 x,, I'y.

For the remainder of the proof, we identify n = R with respect to the basis
{Xi,..., X5} of n. Under this identification, consider the basis {Y7,..., Y5} of

n, Y; being the i-th column of T' = (T};) € GL(5,R), where 7" has the following
entries:

10(161 + 721/5) In(3£/5)?
1165 + 521/5

11 —

)

T12 = 07
. 5(2 +v/5)(161 + 72¢/5) In(3£/5)?
1525 + 6821/5 ’
328380 + 146856+/5 — (159975 + 71543v/5) In(2£5)2
e 202950 + 90762+v/5 ’
Tis =1,
Ty =0,
~ (5+3V6)In(3Y0)
22 — — 3 + \/g 9
Ty =0,
(158114965 + 70711162+/5) In(3572)
141422324 + 632459865
©5(3940598 + 17625851/5) In(2545)
o 17622800 + 7881196v/5
T = 25+ VAT
T3, =0,
T33 =T,
T3 =1,
597 +267+/5 + (3808 + 1703v/5) In(355)
B 369 + 165v/5 ’
Ty =0,
Ty =0,
Tyz =0,

T44 = 17
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22+ V5)

T
T5 =0,
T52 =0,
T53 = 07

2

Ty = ln(m),

T 2In(355)

1+v5

Let 7; := exp™(Y;) for i € {1,...5} and

~92880525355200 + 41537433696024+/5
 57403321562460 + 25671545829588+/5
(3591421616495 + 1606132574069+/5) In(35/5)?
57403321562460 + 25671545829588v/5
(228826127 + 102334155v/5) In(352)
141422324 + 63245986+/5
(757189543 + 338625458+/5) In(2£5)
848533944 + 379475916+/5
724734510 + 3241111261/5 — (325041375 + 145362922+/5) In(2£/5)?
- 724734510 + 324111126v/5
(120789085 + 54018521V/5) In(35%%)

°T 74651760 + 33385282v/5
466724522940 + 208725552012+/5

© 24(12018817440 + 5374978561+/5)
(3393446021605 + 1517595196457+/5) In(3£5)
24(12018817440 4 5374978561+/5) '

1

Sy = —

Y

Sy=1-

)

4

Y

Y

6 =

One Computes Y1 = (T11,07T31,0,0), Yo = (O,TQQ,0,0,0), Y3 = (T13,0,T33,0,0),
Y4 = (51, Sy, 53,T44,T54) and 5 = (54, Ss, 56,T45,T55)-
1 1

1

6.

o
=Ll

[SSIE IE

Moreover, if A denotes the matrix

2
1

, we can calculate

O O = O
OO O = O
O O N

ol
el

TAT™' = v(t;). = de(v(t)). Since v(t;) = exp oy
v(t) () = 1s, () (02) = 72, v(t)(v3) = 1193, v(t)

1)x 0 log", this yields
1) = 1737175 and

—~
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Therefore, we have shown that v(;) preserves the subgroup I'y of N which is
generated by 71, ...,75. In order to complete the proof of (i), it suffices to show
that I'y is a lattice in V.

Since n is 3-step nilpotent, the Baker-Campbell-Hausdorff formula (see e.g.
[76, Chapter 2.15|) yields for all VIV € n

log™ (exp™ (V) exp™(IW)) = V 4+ W+ L[V, W]+ (V. W], W] — [V, W], V).
Therefore, we obtain by a short calculation [Y5,Yy] = Y3, [Y2,Y5] = V) and
[Y4,Ys] = 3Y1 + Yo + 3Y3, Le. the basis {V1,..., Y5} has rational structure con-
stants. Theorem 3.1.1 then implies that ['y is a lattice in V.

ad (ii): Let I' be a lattice in G := Ggrs. By completely solvability and
Theorem 3.2.11 (ii), the minimal model of M = G/I" is the same as the minimal
model M of the Chevalley-Eilenberg complex (A g*,0). In view of Theorem 1.1.6,
it suffices to prove that the latter is 2-formal. On the non-closed generators of
(A g*,0) the differential is given by

0T = T16 — Tos, 009 = —Ty5, O3 = —Tgy — T3 — T4g, 0T4 = —Tyg, 0T5 = T,

i.e. H' (N g*,0) = ([z¢]). Further, one calculates H?(\ g*,9) = {[x14+ Tog + x35])-
The minimal model p: (AV,d) — (A g%, ) then must contain two closed gener-
ators y, z which map to xg and x14 + 226 + x35. Since p(yz) = 146 + 356 is closed
and non-exact, there are no other generators of degree two in (/A V,d), hence
up to degree two, all generators are closed. This implies the minimal model’s
2-formality.

Moreover, x4 + x96 + x35 defines a symplectic form. ]

Remark. In order to determine a lattice in Gg7g, the author also found a lattice
of the completely solvable Lie group G rs. One can show that the corresponding
solvmanifold is formal and has first Betti number equal to one. Unfortunately, it
is not symplectic by Proposition 3.8.3.1.

Remark. Besides the mentioned groups above, the following non-completely
solvable Lie groups Gg,; could give rise to a symplectic solvmanifold Gg;/I" with

bl(GﬁZ/F) = 12

1=28; i=9, b#0; i =10, a # 0;
1 =11, 1 =12; 1=32, a=ec=0<h;
i =37, a=0; i =88, puorg #0; =289, 1ys #£0; (3.13)

i=90, vo £0;  i=092, porp #0; i=92%
i =93, || > L.

But then the cohomology class of the symplectic form cannot lie in the image of
the inclusion H*(A g¢,;,0) — H*(Ge./I',d) by Proposition 3.8.3.1.
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3.8.4 Symplectic solvmanifolds whose first Betti number is
greater than one

In this section, we examine which Lie groups G can give rise to a six-dimensional
solvmanifold G/I" with b;(G/I") > 1. Again, we just consider indecomposable
connected and simply-connected solvable Lie groups. The nilradical of such a
group has not dimension equal to three, see e.g. [58]. Proposition 3.2.5 then
tells us that indecomposable solvable Lie groups have nilradicals of dimension
greater than three. Moreover, the nilpotent ones were considered in Section
3.8.1, hence we can assume that G is non-nilpotent, i.e. dim Nil(G) € {4,5}. The
corresponding Lie algebras are listed in Tables A.10 — A.26.

In Section 3.8.2, we have excluded some groups G since they cannot admit
lattices. Clearly, we omit them in the considerations below.

By Theorem 3.2.11(ii), we have in the completely solvable case an isomor-
phism from Lie algebra cohomology to the solvmanifold’s cohomology, i.e. the
Lie algebra g must satisfy b;(g) > 1, too. In the last section, we saw that gg 5
is the only non-completely solvable but cohomologically symplectic Lie algebra
with b(g) = 1. Therefore, for each lattice I' in G 55 with by (G 55/T) > 1, the
quotient is symplectic. We now turn to Lie algebras with b;(g) > 1. The possible
values of b; can be read of in Tables A.27 — A.29.

The remaining algebras to examine are gg,; with

1=2, a=0; 1=3, d=—1,; i:6,a:—%,b:O;
1=9, b=0; 1 =10, a =0; 1=21, a=0;
1=23, a=0; =25 b=0; 1 = 26;

1=29, 0=0; 1=233, a=0; 1 =234, a=0;
1=36, a=0; +=54,[1=—1, 1= 63;
1=065,1=0;, =70, p=0; 1=283, [ =0;

i = 84; i =88, po=1p=0; i=89, vps=0; (3.14)
1=90, vy =0; =92, vyue=0; 1=93, vy =0;

1= 102; 1 = 105; 1= 107;

1= 113; 1 = 114; 1 = 115;

1 = 116; 1 = 118; 1 = 120;

1= 125; 1= 129; 1= 135.

As above, we just consider such Lie algebras that are cohomologically symplectic,
although this condition is only in the completely solvable case necessary for the
existence of a symplectic form on G/T.

Proposition 3.8.4.1. Let gg; be one of the Lie algebras listed in (3.14).
Then ge; is cohomologically symplectic if and only if it is contained in the
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following list:

bp=2: i=3,d=-1; 1 =10,a = 0; 1=21,a = 0;
1= 36,a = 0; 1=054,1=—1;
1 ="70,p=0; 1 =118, = £1.

bi=3: i=23,a=0,e#40; i=290b=0.

Proof. This is done by a case by case analysis as described in the proof of
Proposition 3.8.3.1. We list the symplectic forms for the Lie algebras that are
cohomologically symplectic. In the cases with b; = 2, the symplectic forms are
given by

i:?), d=-1 : w:)\x16+ux23+ux45, )\,uu#O,
i=10, a=0 : w= AT+ pro3+ Vs, Ay # 0,
7,221, a=10 . W:)\$12+M.T36+VZ’45, )\/JI/?AO,
1236, a=20 : W:)\$12+M.T36+VZ’45, )\/JI/?AO,
i=54, l=—1": w=X(x12+ xo3) + p 34 + v 56, Av £ 0,
i:70, p:O . w:)\(x13+x24)+ux34+1/x56, )\1/7&0,

i=118, b=*+1: w= (213 % Tog) + p (14 — T23) + vwss, (N + p?)v #0.
In the cases with b; = 3, we have the symplectic forms
w=A(r12+ex35) + p (16 + To4) + v (a3 — €x56) + pTos + 0 Tyg
with A\uv # 0 for i =23, a =0, € # 0,
w=A(r13+ex45) + 1 (v16 + T24) + V (23 — € T56) + p T2 + 0 T34
with A # 0, p # PF for § =29 =0, £ # 0 and
W= AT12+ pr13+ v (T16 + Tog) + pTog + 0 T34 + T Tse

with v(ve + pur) #0 fori =29, b=0, € #0. O

Provided there is a lattice in one of the ten Lie groups Gg; in the last propo-
sition whose Lie algebras are cohomologically symplectic, we can ensure that the
corresponding solvmanifold is symplectic. In the completely solvable case, i.e.
i € {3,21,23,29,54}, we can determine cohomological properties of the potential
solvmanifolds.

Proposition 3.8.4.2.
(i) There is a lattice in the completely solvable Lie group Gos .

(ii) For each lattice the corresponding solvmanifold is symplectic, not formal
and satisfies by = 2 as well as by = 3.
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Proof. ad (i) : By definition, we have G := Go3' = Rx, N with N = R’ and
u(t) = expSOR) (tad(Xg)|,), where Xg € g73 ' is chosen as in Table A.11, i.e.

—t 2 0 0

0
pu(t) = 0 0
0

S OO O -

(@)
]
~

Set ¢, := In(22Y5). Then p(t;) is conjugate to

. . This follows

S OO O -
S O = =
O = = O
o O OO

001 3
from (3.4) and the fact that the Jordan form of the upper left block of pu(ty) is
0

1 |. Hence G admits a lattice.

1

O O =

1
1
0

ad (ii): By completely solvability and Theorem 3.2.11 (ii), the solvmanifold’s
minimal model is the same as the minimal model of the Chevalley-Eilenberg
complex (A(z1,...,z6),0). In view of Theorem 1.1.6, it suffices to prove that the
latter is not 2-formal.

Using the knowledge of the Chevalley-Eilenberg complex, one can compute

p: (AN, ..y ys,2),d) = (A(z1,...,26),6) as the minimal model up to genera-
tors of degree two, where

o) = 3, p(y2) = z6, p(ys) = —x2, p(ys) = —x1, p(2) = 425,
dy, = dy, =0, dys = y1y2, dys = yoys, dz = 0.

This obviously implies the statement about the Betti numbers. Moreover, using
the notation of Theorem 1.1.5, we have C!' = (y,42), N' = (y3, y4), and y; (y3+c)
is closed but not exact for each ¢ € C!'. Hence the minimal model is not 1-
formal. O

Proposition 3.8.4.3.
(i) There is a lattice in the completely solvable Lie group G3 ;.

(ii) For each lattice the corresponding solvmanifold is symplectic, not formal
and satisfies by = 2 as well as by = 3.

Proof. The proof of (ii) is completely analogous to that of (ii) in the last
proposition. But this time, the minimal model is given by

p(y1) = x2, p(y2) = x6, p(ys) = —x3, p(ya) = 21, p(2) = T4s,
dyy = dys = 0, dys = y1y2, dys = 11ys, dz =0,

and y; (y4 + ¢) is closed but non-exact for each closed ¢ of degree one.
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ad (i): In order to prove the existence of a lattice, we use the same argumen-

tation as in the proof of Theorem 3.8.3.2 (i). (Note that G515 and G := GO,

share their nilradical N.) But of course, we now have a different initial data:
0 0 0 0 0

0O 0 0 0 O
G =Rx, N with pu(t) =exp¥oexp®™(t| 0 =1 0 0 0 |)olog" and
0O 0 0 -1 0
0O 0 0 0 1
00 0 0 y
-t 0 0 O z
- _ GL(4,R)
A ((y,z,0,w)) = exp 0@ 20 T D]
0 0 0 ¢ w
1 0 0 O Y
=t 1 0 0 2
B 0 0 et 0 v
0 0 0 ¢ w
Arguing analogous as in (3.10), one obtains
t o5 _
,u(t)((x,y,z,v,w)) = (.T - §y2’ﬂ<t)(<y7z7vaw)))'
110 0 0 -4 0 0
_ 3+v5 ._ 010 0 _ 10 0 0
Let tl = hl( 3 ), A = 000 —1 and T = 0 0 178—:—38\\//55 1
001 3 0 0 3+2\/5 1

Then we have TAT~! = 7i(t;). Denote the i-th column of T by b;. Analogous cal-
culations as in loc. cit. imply the existence of a lattice generated by vy := (%, Oga)
- as well

and ~y; := (bio, b;), @ € {1,...,4}, where by € R arbitrary and by = 5
as b30 = b40 =0. O
Proposition 3.8.4.4.

(i) Let ¢ = £1. There is a lattice in the completely solvable Lie group ngggf.

(ii) If there is a lattice in ngggf, e # 0, then the corresponding solvmanifold s
symplectic, non-formal and satisfies by = 3 as well as by = 5.

Proof. ad (i): G99 has the same nilradical N as Ggl, and the latter is
described at the beginning of the proof of Theorem 3.8.3.2.
By definition, Goos = R x,, N with

0 0 0 0 —e
0O 0 0 0 O
p(t) =expNoexp®™( [ 0 =1 0 0 0 |)olog".
0 0 -1 0 O
0O 0 0 0 O
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The functions exp” , log™ also can be found in the proof of Theorem 3.8.3.2. Using
their knowledge, we calculate

2
,u(t)((x,y,z,v,w)) = (l’—%’y2—t€, Y, Z_ty7 %y_tz+va w)

If e = £1, then the map u(2) preserves the lattice
{(z,y,z,v,w) € N|z,y,z,v,w € Z} C N.

Therefore, Ggos admits a lattice.

ad (ii): By completely solvability, the Betti numbers of the Chevalley-Eilen-
berg complex coincide with the solvmanifold’s Betti numbers. A short calculation
yields the first Betti numbers of the former as b; = 3 and by = 5.

The knowledge of the Chevalley-Eilenberg complex (A(x1,...,x),d) enables
us to compute the first stage of the minimal model as above. It is given by

p: (AN, 96),d) = (N(z1,...,26),0) with

p(y1) = 2, p(y2) = x5, p(y3) = v6, p(ya) = —x3, p(v5) = 21, P(Y6) = —T4,
dy, = dys = dyz = 0, dys = y1y3, dys = y1ys — € Y2y3, dys = Y3Ya.

Since ys3 (y¢ + ¢) is closed and non-exact for each closed ¢ of degree one, the
minimal model is not 1-formal. 0

Proposition 3.8.4.5.

(i) Let ¢ € {0,£1}. There is a lattice in the completely solvable Lie group
Gy -

(i1) If there is a lattice in ngggf, e € R, then the corresponding solvmanifold is

5, ifa;éO}

symplectic, non-formal and has by = 3 as well as by = { 6. ife =0

Proof. The argumentation is analogous to the last proof, but this time we
have

u(t)((x,y,z,v,w)) = (x — %t3z+ %t% —ctw,y, z, —tz+wv, %tzz — tv+w).
(Note that there is no misprint. The maps exp” o exp®™(tad(Xg)) o log" and
exp®™ (¢ ad(Xs)) have the same form.) Fore € {0, 41}, u(6) preserves the integer
lattice mentioned in the last proof. This implies (i).

In order to prove (ii), we consider the minimal model. Up to generators of
degree one, it is given by

p(yl) = T2, P(y2) = I3, p<y3> = T¢, /)(y4) = —Ty, p(x5> = —Ts, /)(yﬁ) = —Iy,
dy, = dy, = dys = 0, dys = yoy3, dys = ysys, dys = y1y2 + € Y3ys,
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if e #0, and

P(Zh) = X9, P(yz) = T3, P(y?,) = Tg, P(y4) = —Z, P(xs) = — T4, P(yﬁ) = — s,
dy1 = dys = dys = 0, dys = y1y2, dys = y2y3, dys = Y3ys,

if e = 0. In both cases y, (y4 + ¢) is closed and non-exact for all closed ¢ of degree
one. U

The following result is due to Fernandez, de Léon and Saralegui. Its proof can
be found in |26, Section 3|. Note that the cohomological results are independent
of the choice of the lattice, since the Lie group in the proposition is completely
solvable.

Proposition 3.8.4.6. The completely solvable Lie group Gy, admits a lattice.
For each such, the corresponding solvmanifold is symplectic, non-formal and sat-
isfies by = 2 as well as by = 5. O

Summing up the results concerning completely solvable Lie groups that admit
symplectic quotients, we obtain:

Theorem 3.8.4.7. All siz-dimensional symplectic solvmanifolds that can be writ-
ten as quotient of a non-nilpotent completely solvable indecomposable Lie group
are contained in one of the last five propositions, Theorem 3.8.3.2 or Theorem
3.8.3.4. O

To end this section, we consider the four cohomologically symplectic Lie al-
gebras gg; of Proposition 3.8.4.1 that are not completely solvable, this means
1=10Na=0,1=36ANa=0,i=T70Ap=0o0ri=118 Ab= =£1. Clearly, the
existence of a lattice implies that the corresponding solvmanifold is symplectic.
But in order to make a statement about cohomological properties, one needs an
assumption about the first two Betti numbers to ensure the knowledge of the
cohomology algebra.

Proposition 3.8.4.8.
(i) Each quotient of the Lie group G := ng‘fo by a lattice is symplectic and G
admits a lattice T with by (G/T") = 2.
(i1) If there is a lattice in G such that the corresponding solvmanifold satisfies

by =2 and by = 3, then it is symplectic and not formal.

Proof. We have G =R x,, N with N =R, u(t) = expS*®®)(t ad(Xe)|,) and
Xg € gg chosen as in Table A.11, i.e.

pu(t) =

S OO O -
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110 0 0
011 0 O
p(m) is conjugate to [ 0 0 1 0 0 [. This follows from the fact that the
000 -1 0
000 0 -1

Jordan form of the upper left block of p(7) is

o O =

10
1 1 |. Hence GG admits a
01

lattice I'.

A short calculation yields that the abelianisation of this lattice is isomorphic
to Z2 D Z22, i.e. bl(G/F) = 2.

Using the assumptions of (ii), one calculates the minimal model up to gener-
ators of degree one as

p(y1) = 3, p(y2) = w6, pys) = —x2, pys) = —21,
dyy = dy2 = 0, dys = y1y2, dys = y2ys,
and y; (y3 + ¢) is closed but not exact for each closed ¢ of degree one. U

Proposition 3.8.4.9.

(i) Each quotient of the Lie group G := Ggfgﬁ by a lattice is symplectic and G
admits a lattice I' with b (G/T") = 2.

(i1) If there is a lattice in the Lie group G such that the corresponding solvmani-
fold satisfies by = 2 and by = 3, then it is symplectic and not formal.

Proof. The proof of (ii) is analogous to the last one. Up to generators of
degree one, the minimal model is given by

p(y1) = w2, p(y2) = w6, p(ys) = —x3, p(ys) = T1,
dy, = dys = 0, dys = y1y2, dys = Y13,

and y; (y4 + ¢) is closed but not exact for each closed ¢ of degree one.
ad (i): Using another initial data, we argue as in the proof of Proposition
3.8.4.3. We now have ,u(t)((x,y,z,v,w)) = (x -z (y, z,v,w )) with

0O 0 0 O Y
— o GL(4,R) —t 0 0 0 z
,u(t)((y,z,v,w)) - eXp (t O 0 0 t ) v
0O 0 —t O w

1 0 Y

_ —t 1 z

N 0 0 cos(t v

0 0 —sin(t w
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110 0 0 —4 00
B 101 0 O 11 0 00

Let t; =7, A = 00 -1 0 and T := 0o 0 10 | Then we
00 0 -1 0 0 01

have TAT~! = 7i(t;). Denote the i-th column of T by b;. Analogous calculations
as in loc. cit. lead to a lattice generated by v := (%, Ogs) and ~; := (byo, b;) for
i€ {l,...,4}, where byy € R arbitrary and byg = —5—, b3p = byo = 0.

Obviously, this lattice is represented by

1
2ty

(T, %, -l [m) =1, 1] =, (1) =932 1] =722 (1,72 = %)

and its abelianisation is Z? @ Z,2, i.e. the solvmanifold’s first Betti number equals
two. U

Proposition 3.8.4.10.

(i) Each quotient of the Lie group G := G2380 by a lattice is symplectic and G
admits a lattice I' with b (G/T") = 2.

(11) If there is a lattice I' in G such that by(G/TI') = 2 and by(G/T") = 3, then
G/T" is formal.

Proof. ad (i): By definition, we have G = R x, N with N = G5, and
1(t) = exp oexpA™ (tad(Xg)|s) o log", where {X1,..., X5} denotes a basis of
g as in the second row of Table A.18. Note that {X,..., X5} is a basis of the
nilradical n. One computes

p(t)e = de(u(t)) = exp™®(tad(Xs))
cos(t)  sin(t) 0 0 0
—sin(t) cos(t) 0 0 0
= 0 0 cos(t) sin(t) 0
0 0  —sin(t) cos(t) 0
0 0 0 0 1

Using n = <X5> Mad(Xg,) <X1, .. .,X4 |> and ad(X5)(X1) = ad(X5)(X2) = 0,
ad(X;5)(X3) = =X, ad(X5)(Xy) = — X3, we can determine the Lie group N.
As a smooth manifold N equals R®, and the multiplication is given by

(a,b,c,r,8) - (z,y,z,v,w) = (a+x+cw, b+y+rw,c+z,r+uv, s+w).
By Theorem 3.3.2, we can obtain the exponential map of N as

2w vw
eXpN(xXl—|—yX2+zX3+vX4+wX5):(x—|—7,y+7,z,v,w),

and obviously, this implies

wz
l‘__

vw
B Y

lOgN ((x,y,z,v,w)) = ( )Xl + ( 9 )X2 + ZX3 + UX4 + ’LUX5.
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From su(t) = exp™ opu(t), o log™ we get

n(@)((z,y, z,v,w)) = (cos(t)x +sin(t)y, —sin(t) z + cos(t) y,
cos(t) z + sin(t) v, —sin(t) z + cos(t) v, w)

and p(m) preserves the lattice {(x,y, z,v,w) € N|z,y,z,v,w € Z}.

The corresponding solvmanifold has b; = 2 since the abelianisation of this
lattice is isomorphic to Z? & Zy*.

ad (ii): Up to generators of degree two, the minimal model is given by

p(y1) = x5, p(y2) = x6, p(21) = T13 + Tou, p(22) = T34,
dyl = dy2 = 0, le = ng = 0,

hence it is 2-formal. By Theorem 1.1.6, the solvmanifold is formal. U
Proposition 3.8.4.11.

(i) G = GY1k™" admits a lattice such that the first Betti number of the corre-
sponding solvmanifold equals two (and the second Betti number equals five).

(11) If there is a lattice I' in G such that by(G/I') = 2 and by(G/T") = 3, then
G/T is symplectic and formal.

Proof. The construction of the lattices mentioned in (i) can be found in |79].
In loc. cit. Gg1ig' is denoted by G5 and GO1k™" by Gy, respectively. The Betti
numbers of the quotient of GV75" ™" are determined explicitly. In the case of
G(l)’llg’_l, one can make an analogous computation.

Assume there is a lattice that satisfies the condition of (ii). Up to generators
of degree two, the solvmanifold’s minimal model is given by

p(y1) = x5, p(y2) = x6, p(21) = T13 £ Tou, p(22) = T14 F T3,
dyl = dyg == 0, le == dZQ = 0,

hence it is 2-formal. Theorem 1.1.6 then implies formality. U

Remark. Gy 15" is the underlying real Lie group of the unique connected and
simply-connected complex three-dimensional Lie group that is solvable and not
nilpotent. Its compact quotients by lattices are classified in [59, Theorem 1|.
They always satisfy b; = 2 and moreover, for the Hodge number h%! holds either
h%t =1 or ROt = 3.

Remark. Besides the groups mentioned in this section, the following solvable
but not completely solvable Lie groups Gg; could give rise to a symplectic solv-
manifold with b; > 1. But then the cohomology class of the symplectic form
cannot lie in the image of the inclusion H*(A g ,;,0) — H*(Ge./I',d).

There are the sixteen classes of groups in (3.13) and

1=9, b=0; 1 =233, a=0; 1 =234, a=0;
1=235, a= —b; 1=89, s=0, vy #0; =92, vyuy=0;
i € {107,113,...,116,125,135}.
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3.8.5 Decomposable solvmanifolds

The six-dimensional decomposable solvmanifolds G/T" = H; /T’y x Hy/T's being
not a nilmanifold are contained in Table 3.5 on page 89. Using Theorem 3.2.11,
one can deduce the statement about the Betti numbers. The results on the
existence of a symplectic form were mostly made by Campoamor-Stursberg in
[10]. He examined whether the Lie algebra admits a symplectic form. Note that
in [10] the symplectic forms

ATia + L T15 + VT + pr3s +0x56, pF 0, Ao # uv,

on g, & g are absent.

Since there is a monomorphism from the Lie algebra cohomology to the solv-
manifold’s cohomology, the existence of a symplectic form with non-exact cubic
on the Lie algebra implies the existence of such an on the solvmanifold. Recall
that the Lie algebra is generated by the left-invariant one-forms on the Lie group.
If the Lie algebra cohomology is isomorphic to the solvmanifold’s cohomology!?,
one knows whether the solvmanifold is symplectic or not. Up to exact summands
the symplectic forms are listed in Table 3.6 with respect to the dual of the Lie
algebra’s bases given in Appendix A. In the column “isom.”, we mark whether
there is an isomorphism of the cohomology algebras.

We do not claim that Table 3.5 contains all connected and simply-connected
decomposable solvable and non-nilpotent Lie groups which admit a lattice — just
those Lie groups admitting a lattice such that the corresponding solvmanifold is
a product of lower-dimensional ones.

3.9 Relations with the Lefschetz property

We have seen in Chapter 2 that a compact Kéhler manifold is formal, Hard
Lefschetz and its odd-degree Betti numbers are even. Even if a manifold has
a complex structure, these conditions are not sufficient as the following theorem
which is mentioned in [41] shows. Recall, we have seen above that G57 "~ admits

a lattice.
Theorem 3.9.1. Let I' be an arbitrary lattice in Gy7 ", Then the solvmanifold
M = Géf?l’_l/F x St is formal, Hard Lefschetz and has even odd-degree Betti

numbers. Moreover, M possesses a complex structure but it cannot be Kdhlerian.

Proof. From Proposition 3.7.2.1 follows that the Lie group G :== G577 xR
possesses a lattice I'. The Chevalley-Eilenberg complex of its Lie algebra

<X17 ... 7X6‘ [X17X5] = X17 [X27X5] == X27 [X37X5] = _X37 [X47X5] == _X4>

12E.g. this happens if the Lie algebra is completely solvable or if the above monomorphism
must be an isomorphism by dimension reasons.
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Table 3.5: Decomposable non-nil-solvmanifolds G/T" = Hy/T'y x Hy /Ty

| G | 0:(G/T) | b2(G/T) | formal | sympl. | Comment |
PIT xR 2 1 yes no —l<r<g<p<l,
pqr # 0,
prgtr=—1
G- P7T xR 2 3 yes yes p €0, 1]
PPTIXR 2 3 yes yes
Gz xR 3 5 no yes
Gii3 99" xR | >2 > 1 ? ? q€[-1,0],
q 7& _%7 r 7& 0
Giip” xR > 2 >3 yes r#0
GY xR >3 >5 yes
Gsis xR 2 3 1no yes
Gy xR > 2 >1 ? p#0, r¢{0,£1},
PP X R > 2 >3 yes (p#0,7r=+£1)
or (p=0,r¢{0,+1})
X R > 2 > 5 7 yes
GY g xR > 2 >3 ? yes
Gsa0 X R 3 3 yes no
Gy xR >3 >3 ? ?
—an xR 3 3 yes 1no
G532 xR >3 >3 ? ?
GP P x R? 3 3 yes no p€[—3,0]
G PP x R? 3 3 yes no p>0
Gz xR? 3 3 yes no
Gl x R? 3 3 yes 1no
Gy ¥ R? 4 7 yes yes
G x R? 4 7 yes yes
Gsq X G;}l 3 5 no yes
Gz X GYs 3 5 no yes
Gy x Gy 2 3 yes yes
Gz x G5 2 3 yes yes
GY . x GY . 2 3 yes yes
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Table 3.6: Symplectic forms on G/I" = H; /Ty x Hy/T'y
g ‘ symplectic forms ‘ isom. ‘
027" @ g1 | azig + bass + cass, abe # 0 yes
géf;l’_l @Dy | aris+bryy+ croz+drey + exss, e(bc—ad) #0 | yes
055 D g1 axyy + brys + crog + dwsy + exsg, d(ae —bc) #0 | yes
g;éo’r D1 | aria +brsy + casg, abe # 0 ?
00,01 | are +bris+ cryg + dasy + exss, d(ae —be) # 0 ?
0515 D91 | a (@ — @23) + baos + case, abc # 0 yes
07 B g | a(wis £ w24) + b (214 F 293) + casg, abe # 0 ?
p#0
ggf(l)’; Dgr | aris+brsy + cxsg, abc # 0 ?
r#+1
920 @ g1 | amig + b (213 £ T9s) + ¢ (214 F Ta3) + d 34 + € T, ?
e(ad F (b + ) #0
00 s P o1 | a(wz+ xo) +bxog + cas6, ac # 0 ?
0;,D391 | amia +bwzy +cwzs + dwgs + a5 + f Tag + g 56, | yes
a(de —cf +bg) #0
09, D3g1 | amig+brsy+ cass +dass + exys + f xas + gTse, | yes
a(de —cf +bg) #0
931D 034 | aT19 +bx13 + cog + dasg + eays, e(ad —be) #0 | yes
031 D855 | amia +bri3+ cwos + dass + eys, e(ad —be) #0 | yes
050D 034 | axia +bxss + cags, abe # 0 yes
050003 | axig +bass + cags, abe # 0 yes
00 DS | axyy + bass + g5, abe # 0 yes
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is given by
0x1 = —T15, 0Ty = —Tg5, 0T3 = T35, 0T = Ty, 05 = 0x6 = 0,
where {z,..., 24} is a basis of the left-invariant one-forms on G. Since G is

completely solvable, Theorem 3.2.11 (ii) enables us to compute the cohomology
of M as

12

), [we]),
3713] [9314] [9323], [9324], [9356]%

{l
{l
<[$1 ] [«T136] [$145], [$146], [$235], [«T236]> [$245], [«T246]>7 (3-15)
{l
{l

I

12

561234] [«T1356]7 [~T1456]> [$2356], [«T2456]>7

~— ~— ~— ~— ~—

I

9312345] [9312346] > .

Let [w] € H*(M,R) represent a symplectic form on M. A short calculation shows
that there are a,b,c,d, e € R with e(bc — ad) # 0 and

(w] = alz1a] + b[w14] + c[was] + d[waa] + e[s6].

Since [75] U [w]? = 2(bc — de)[r19315] # 0 and [z6] U [w]? = 2(be — de)[x12346] # O,
the homomorphism L?: H'(M,R) — H°(M,R) is an isomorphism.
In the basis (3.15), the homomorphism L': H?*(M,R) — H*(M,R) is rep-
—d ¢ =b —a 0

e 0 0 0 a

resented by the matrix [ 0 e 0 0 & | which has 2e*(ad — bc) # 0 as
0 0 e 0 ¢
0 0 0 e d

determinant, hence M is Hard Lefschetz.
We define an almost complex structure J on G by

JXl = X27 JXZ = _X17 JX3 = X47 JX4 = _X37 ']X5 = X67 JXG = _X57

which induces an almost complex structure on M. It is easy to see that the
Nijenhuis tensor vanishes, hence M is a complex manifold.

M is a non-toral solvmanifold which is a quotient of a completely solvable Lie
group. Therefore, M cannot be Kahlerian by Theorem 3.2.13. U

The authors of [47] considered the relations between the above three properties
for closed symplectic manifolds. We want to try to complete |47, Theorem 3.1
Table 1] in the case of symplectic solvmanifolds. Actually, the mentioned table
deals with symplectically aspherical closed manifolds, but note that symplectic
solvmanifolds are symplectically aspherical.

We start our investigations by the examination of the Lefschetz property in
dimension four.
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Theorem 3.9.2. A four-dimensional symplectic solvmanifold is not (Hard) Lef-
schetz if and only if it is a non-toral nilmanifold. Especially, the (Hard) Lefschetz
property is independent of the choice of the symplectic form.

Proof. By Theorem 3.6.2, there are five classes of four-dimensional symplectic
solvmanifolds. Three of them are nilmanifolds and satisfy the claim by Corollary
3.1.10.

There remain two non-nilmanifolds to consider. We start with a quotient
M of the Lie group which has g51 @ g1 as Lie algebra, see Table A.1. The Lie
group is completely solvable, hence the Lie algebra cohomology is isomorphic to
the solvmanifold’s cohomology. If zy,..., x4 denote the left-invariant one-forms
which are dual to the basis given in Table A.1, one computes

H'(M,R) ([s], [a]),

H?*(M,R) ([z12]; [234]), (3.16)
HY(M,R) = ([x123], [£124]).

12

12

The class representing a symplectic form must be of the form [a 15 + bx34] with
a,b # 0 and obviously, the Lefschetz map with respect to this class is an isomor-
phism.

Now, consider a solvmanifold G/T" such that the Lie algebra of G is g5+ @ g
and b;(G/I') = 2. A short computation yields that the Lie algebra cohomology
of g35 @ g1 is the same as in (3.16). Since G/I" is compact and parallelisable,
we see further b;(G/I") = 2 for i € {1,2,3}, and Theorem 3.2.11 (i) implies that
(3.16) also gives the cohomology of G/T". We have yet seen that a symplectic
four-manifold with this cohomology is Hard Lefschetz. U

Denote KT “the” four-dimensional symplectic nilmanifold with b, (KT') = 3.
We have seen that KT is not formal and not Lefschetz. Its square has the
following properties:

Theorem 3.9.3 (|47]). KT x KT is not formal, not Lefschetz and has even
odd-degree Betti numbers. 0

Next, we are looking for an example of a formal manifold that is not Lefschetz
and has even odd degree Betti numbers resp. an odd odd degree Betti number.

Theorem 3.9.4. The Lie group Ggrs admits a lattice T', see above. M := Ggq5/T
is a formal solvmanifold with by (M) = 1 that admits a symplectic form w such that
(M,w) is not Hard Lefschetz. Moreover, (M x M,w X w) is a formal symplectic
manifold with even odd degree Betti numbers that s not Hard Lefschetz.

Proof. By Theorem 3.8.3.4, M is a formal symplectic manifold with Betti
numbers by (M) = by(M) = 1. Note that this implies that M x M is symplectic
and formal (the latter property by Proposition 1.1.7).
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Corollary 2.1.4 forces M to be not Lefschetz and since |27, Proposition 4.2]
says that a product is Lefschetz if and only if both factors are Lefschetz, M x M
is not Lefschetz.

M is a six-dimensional solvmanifold and so it is parallelisable. Hence the fact
bo(M) = bi(M) = by(M) = 1 implies b3(M) = 2. This and Poincaré Duality
imply by(M x M) = by (M x M) = 2, bs(M x M) = by(M x M) = 6 and
bs(M x M) = b;(M x M) = 4. O

In 1990, Benson and Gordon |4, Example 3| constructed an eight-dimensional
non-exact symplectic and completely solvable Lie algebra that does not satisfy
the Hard Lefschetz property, but they did not know whether the corresponding
connected and simply-connected Lie group GP¢ admits a lattice.

Fernandez, de Leén and Saralegui computed in [26, Proposition 3.2| the min-
imal model of the complex of the left-invariant differential forms on GP¢. It is
formal and its cohomology of odd degree is even-dimensional. If GP¢ admits
a lattice, by completely solvability, the corresponding solvmanifold would be a
symplectic and formal manifold with even odd degree Betti numbers that violates
the Hard Lefschetz property.

In 2000, Tralle [74] claimed that a lattice does not exist but Sawai and Yamada
noted 2005 Tralle’s proof would contain calculatory errors and constructed a
lattice [69, Theorem 1|. This proves the next theorem.

Theorem 3.9.5. There exists an eight-dimensional symplectic and formal solv-
manifold MB with even odd degree Betti numbers that is not Hard Lefschetz. [

We sum up the above results in Table 3.7. It is an enlargement of |47, Theorem
3.1 Table 1].

Table 3.7: Relations of the Kéhler properties

‘ Formality ‘ Hard Lefschetz ‘ baiv1 = 0(2) ‘ Example ‘
yes yes yes Kahler
yes yes no impossible
yes 1no yes MPBC Ggrs/T x Gers/T
yes 1no 1no Ge.rs/T
no yes yes ?
no yes no impossible
no no yes KT x KT
no no no KT

Unfortunately, the missing example does not arise among the six-dimensional
solvmanifolds that possess the same cohomology as the corresponding Lie algebra.
In order to see this, one has to examine which of them satisfy the (Hard) Lefschetz
property. We briefly mention the results.
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By Corollary 2.1.4, a manifold with odd first Betti number cannot be Lef-
schetz. We now examine such indecomposable solvmanifolds whose first Betti
number is even; in the completely solvable case, these are quotients of Gg3, G2,
and G 3.

The proof of the next two propositions is done analogous as that of Theorem
3.9.1. By complete solvability, we know the solvmanifolds’ cohomology and all
possible symplectic forms were determined in the proof of Proposition 3.8.4.1.
Therefore, one can compute the image of the Lefschetz maps.

Proposition 3.9.6. Let a lattice in G55 or GY,, be given. (Wee have seen above
that such exists.) Then the corresponding (non-formal) symplectic solvmanifold
(with by = 2, by = 3) is not Lefschetz, independent of the choice of the symplectic
form. O

Proposition 3.9.7. Let a lattice in G4, be given. (Such ewists by Proposition
3.8.4.6.) The corresponding (non-formal) symplectic solvmanifold (with by = 2,
by = 5) is Lefschetz but not Hard Lefschetz, independent of the choice of the
symplectic form. O

Remark. The existence of a lattice in Gy é4 was proven by Fernandez, de Léon
and Saralegui in |26]. They also computed the Betti numbers of the corresponding
solvmanifold, showed that it is not formal and does not satisfy the Hard Lefschetz
property with respect to a certain symplectic form. Moreover, Fernandez and
Munoz proved in [27, Example 3| that the manifold is Lefschetz. (Analogous
calculations work for other symplectic forms.)

In the non-completely solvable case, the situation becomes a little more com-
plicated. If we are willing to make a statement about the Lefschetz property,
we have to know the cohomology and need therefore assumptions on the Betti
numbers.

Proposition 3.9.8. If there is a lattice in one of the non-completely solvable
groups ng?, i € {10,36,70} resp. Ggfﬁls’_l such that the cohomology of the cor-
responding solvmanifold M; is isomorphic to the Lie algebra cohomology of ge.;
(i.e. the cohomology is as small as possible), then one computes that the following
hold, independent of the choice of the symplectic forms provided by Proposition

3.8.4.1:
o My and Msg are not formal and not Lefschetz.
o Mz is formal and Lefschetz but not Hard Lefschetz.
o Mg is formal and Hard Lefschetz.

(The statements on formality follow from the propositions at the end of Section
3.8.4.) O
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Finally, we consider the decomposable symplectic solvmanifolds listed in Table
3.5.

Proposition 3.9.9. Let G/T' = Hy/T'; x Hy/T'y be one of the symplectic solv-
manifolds listed in Table 3.5 such that in the corresponding row of the table arises
no >-sign.

Then G/T" is formal if and only if it is Hard Lefschetz (independent of the
special choice of the symplectic form).

Sketch of the proof. One has an isomorphism from the Lie algebra cohomology
to the solvmanifold’s cohomology for each manifold as in the theorem. Then an
explicit calculation as in the proof of Theorem 3.9.1 yields that the Hard Lefschetz
manifolds among the considered are exactly the formal ones.

Note, if b is not even, the claim follows directly from Theorem 2.1.3. U

Remark. G5 ;/T; x St is Lefschetz. The other manifolds in the last proposition
are even not Lefschetz if they are not Hard Lefschetz.

G515/T1 x S' is a Lefschetz manifold that is not formal and has even odd
degree Betti numbers.

A similar result as the last proposition holds for the manifolds in Table 3.5
such that in the corresponding row of the table arises a >-sign. But we again
must make an assumption that enables us to compute the whole cohomology.

Proposition 3.9.10.
(i) Let M = G5;/T' x R/Z be a symplectic manifold such that one of the fol-
lowing conditions holds:
a) i =13 with ¢ =0 and by (M) =2 as well as by(M) = 3,
b) i =17 withp #0, r = =£1 and by (M) = 2 as well as by(M) = 3,
c) i=17 withp=0, r € {0,£1} and by(M) =2 as well as by(M) = 3,
d) i=17 withp =0, r = £1 and by (M) = 2 as well as by(M) = 5.

Then M is formal and Hard Lefschetz (independent of the special choice of
the symplectic form).

(ii) Let T be a lattice in G, such that M = G2 ,,/T X R/Z satisfies by(M) = 3
and by(M) = 5.
Then M is not formal and not Lefschetz (independent of the special choice
of the symplectic form).

(iii) Let T be a lattice in G2 |4 such that M = G2 3/T x R/Z satisfies by (M) = 2
and by(M) = 3.

Then M is not formal and Lefschetz but not Hard Lefschetz (independent
of the special choice of the symplectic form). O
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Chapter 4

Rational Homotopy and Minimal
Models

In general, it is very difficult to calculate the homotopy groups m(X) of a given
topological space X. However, if one is willing to forget the torsion, with certain
assumptions on X, the rational homotopy groups m(X) ® Q can be determined
by the theory of minimal models.

4.1 PL forms

In order to relate minimal models to rational homotopy theory, we need a differ-
ential graded algebra over Q to replace the de Rahm algebra.

Let A™ be a standard simplex in R™™! and (Qpy(A"),d) the restriction to
A™ of all differential forms in R™™! which can be written as Y P, ; dz;, ...dx;,,
where P, ;. € Q[z1,...,2,41] together with multiplication and differential in-
duced by R"*1,

Let X = {(0i)icr} be a path-connected simplicial complex. Set for k € Z

Vpr(X) = {(i)ier | s € Qpr(03) A (00 C Doy = als, = i)},

and Qpr(X) := @,y U (X). It can be verified that the set Qpr,(X) of so-called
PL forms is a differential graded algebra over Q if we use the multiplication and
the differential on forms componentwise.

Analogous to the usual result for the de Rham complex, we have:

Theorem 4.1.1 (|63, Theorem 1.1.4]). If X is a path-connected simplicial com-
plex, then there is an isomorphism H*(Qpr(X),d) = H*(X, Q). O

For such a simplicial complex X, we define the (Q-)minimal model Mx ¢ of
X to be the minimal model of (2p(X),d). Its relation to the minimal model of
a smooth manifold (see Chapter 1) is given by the following theorem.

Theorem 4.1.2 (|63, Theorem 1.3.9|). Let M be a connected smooth manifold.
Then there is an isomorphism Myrg @ R = My,. O

97
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4.2 Nilpotent spaces

Already in is paper [72|, Sullivan shows that for nilpotent spaces, there is a
correspondence between the minimal model and the rational homotopy. To state

this result, we need the notion of a nilpotent space resp. nilpotent module.
Let G be a group, H be a G-module, T'% H := H and

IS'H:={(gh—h|lge GAheTLH) CTLH

for i € N.

Then, H is called a nilpotent module if there is ny € N such that I'Y H = {1}.

We recall the natural m-module structure of the higher homotopy groups
7, of a topological space. For instance, let (X, ) be a pointed space with
universal cover (X,7). It is well known that m (X, 2) = D(X), the group
of deck transformations of the universal covering. Now, because X is simply-
connected, every free homotopy class of self-maps of X determines uniquely a
class of basepoint preserving self-maps of X (see e.g. [43, Proposition 4.A.2|).
This means that to every homotopy class of deck transformations corresponds a
homotopy class of basepoint preserving self-maps (which are, in fact, homotopy
equivalences) (X,%) — (X, ). These maps provide induced automorphisms
of homotopy groups m,(X, Zo) = m,(X, o) (n > 1) and this whole process then
provides an action of w1 (X, zg) on m,(X, xg).

Definition 4.2.1. A path-connected topological space X whose universal cov-
ering exists is called nilpotent if for xy € X the fundamental group m (X, x¢)
is a nilpotent group and the higher homotopy groups m,(X,zy) are nilpotent
m1(X, z9)-modules for all n € N, n > 2. Note, the definition is independent of
the choice of the base point.

Example.
(i) Simply-connected spaces are nilpotent.
(i) S* is nilpotent.

(iii) The cartesian product of two nilpotent spaces is nilpotent. Therefore, all
tori are nilpotent.

(iv) The Klein bottle is not nilpotent.
(v) P™(R) is nilpotent if and only if n = 1(2).

Proof. (i) - (iv) are obvious and (v) can be found in Hilton’s book [46] on
page 165. U

The main theorem on the rational homotopy of nilpotent spaces is the follow-
ing.
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Theorem 4.2.2. Let X be a path-connected nilpotent CW-complex with finitely
generated homotopy groups. If Mxqo = AV denotes the minimal model, then
for all k € N with k > 2 holds:

Homy (m,(X), Q) = VF

Using another approach to minimal models (via localisation of spaces and
Postnikow towers), this theorem is proved for example in [50]. The proof that
we shall give here is new to the author’s knowledge. We will show the following
more general result mentioned (but not proved) by Halperin in [37].

Theorem 4.2.3. Let X be a path-connected triangulable topological space whose
universal covering exists. Denote by Mx o = AV the minimal model and assume
that

(i) each mi(X) is a finitely generated nilpotent m (X )-module for k > 2 and

(i7) the Q-minimal model for K(m(X),1) has no generators in degrees greater
than one.

Then for each k > 2 there is an isomorphism Homyg(my(X), Q) = V*,

Remark. The homotopy groups of a compact nilpotent smooth manifold are
finitely generated:

By [46, Satz 7.22], a nilpotent space has finitely generated homotopy if and
only if it has finitely generated homology with Z-coefficients. The latter is satis-
fied for compact spaces. O

The main tool for the proof of the above theorems is a consequence of the
fundamental theorem of Halperin [37]. In the next section, we quote it and use
it to prove Theorems 4.2.2 and 4.2.3.

4.3 The Halperin-Grivel-Thomas theorem

To state the theorem, let us recall a basic construction for fibrations.

Let m: & — B be a fibration with path-connected basis B. Therefore, all
fibers F, = 7= 1({b}) are homotopy equivalent to a fixed fiber F since each path ~y
in B lifts to a homotopy equivalence L. : F, ) — F, ) between the fibers over the
endpoints of 4. In particular, restricting the paths to loops at a basepoint of B we
obtain homotopy equivalences L. : F' — [ for I’ the fibre over the basepoint 0.
One can show that this induces a natural 7 (B, by)-module structure on H*(F, Q).

Theorem 4.3.1 (|63, Theorem 1.4.4|). Let F, E, B be path-connected triangulable
topological spaces and F'— E — B a fibration such that H"(F,Q) is a nilpotent
m1(B, by)-module for n € Ny. The fibration induces a sequence

(QpL(B),dg) — (QpL(E),dg) — (QpL(F),dFr)
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of differential graded algebras. Suppose that H*(F,Q) or H*(B,Q) is of finite

type.
Then there is a quasi-isomorphism V: (Mpo ® Mpg, D) — (QpL(E),dg)
making the following diagram commutative:

(QpL(B),ds) (QpL(E),dg)

(Qpr(F),dp)
PB v PF

Mpg, Dp) ————— (Mpo®@ Mpg, D) (Mpg, Dr)
Furthermore, the left and the right vertical arrows are the minimal models. More-
over, if Mprg = \Vr, there is an ordered basis {v} |i € I} of Vi such that for
all i,j € I holds D(vf) € Mpg® (Mpg),r and (vf <vf = Jof| <|vf]). O

Remark. In general, (Mpg ® Mpg, D) is not a minimal differential graded
algebra and D|rq,., # Dr is possible.

We need some further preparations for the proofs of the above theorems. The
first is a reformulation of the results 3.8 — 3.10 in [46]. It justifies the statement
of the next theorem.

Proposition 4.3.2. Let G be a finitely generated nilpotent group. Then the set
T(G) of torsion elements of G is a finite normal subgroup of G and G/T(G) is
finitely generated. U

Theorem 4.3.3. Let G be a finite generated nilpotent group and denote by T'(G)
its finite normal torsion group.
Then K(G,1) and K(G/T(G),1) share their minimal model.

Proof. Since T'(G) is finite and Q is a field, we get from [22, Section 4.2]
H"(K(T(G),1)),Q) = {0} for n € N;. The construction of the minimal model
in the proof of Theorem 1.1.2 implies that Mg (r(),1),0 has no generators of
degree greater than zero. Now, the theorem follows from the preceding one,

applied to the fibration K(7(G),1) - K(G,1) — K(G/T(G), 1). O

Lemma 4.3.4. Let X be topological space with universal covering p: X - X.
Then, up to weak homotopy equivalence of the total space, there is a fibration
X = X = K := K(m(X),1). Moreover, for a class [y] € m(K) = my(X) the
homotopy equivalences Ly : X — X described at the beginning of this section are
given by the corresponding deck transformations of p.
Proof. Denote by m: E — K(m(X), 1) the universal principal m; (X)-bundle.
Regard on E x X the diagonal 71 (X)-action. Then, the fibre bundle

X — (Ex X)/m(X)) — K

has the desired properties. 0
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Proof of Theorem 4.2.3:

Let X be as in the statement of the theorem. For simply-connected spaces, the
theorem was proven in |23, Theorem 15.11]. Now, the idea is to use this result
and to consider the universal cover p: X — X. Denote by Mz o = /\17 and
Mx g = AV the minimal models. We shall show

Vise VE 2 VE, (4.1)

This and the truth of the theorem for simply-connected spaces implies then the
general case

Viso VF & V* 2 Homg(m,(X ), Q) = Homg (m(X), Q).

It remains to show (4.1): Since X is triangulable, X and X can be scen as
CW-complexes. Therefore, up to weak homotopy, there is the following fibration
of CW-complexes B

X — X5 K(m(X),1) =K.

We prove below:

H*(X,Q) is of finite type. (4.2)
H*(X,Q) is a nilpotent m; (X )-module.

Then Theorem 4.3.1 implies the existence of a quasi-isomorphism p such that the
following diagram commutes:

(QpL(K),dx)

(QPL(X)v df(')

(Qpr(X),dx)

PK P Px

(Mg, Dg) —— (Mko @Mz, D) (M)?,Q’ Dx)

Finally, we shall see
(Mo ® Mgz o, D) is a minimal differential graded algebra (4.4)

and this implies (4.1) since M has no generators of degree greater than one by
assumption (ii).

We still have to prove (4.2) - (4.4):

By assumption (i), m(X) = m(X) is finitely generated for k& > 2. Since
simply-connected spaces are nilpotent, [46, Satz 7.22] implies the finite generation
of H,(X,Z) and (4.2) follows.

(4.3) is the statement of Theorem 2.1 (i) = (i7) in [45] — applied to the action
of w1 (X) on m;(X).
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ad (4.4): By assumption (ii), Mg has no generators in degrees greater than
one, i.e. Mg g = A{vi|i € I} with |v;] = 1. The construction of the minimal
model in the proof of Theorem 1.1.2 implies that the minimal model of a simply-
connected space has no generators in degree one, i.e. Mz o = A{w;|j € J} with
|lw;| > 1. We expand the well orderings of I and J to a well ordering of their
union by Ver Vj € J i < j. Theorem 4.3.1 implies that D(w;) contains only
generators which are ordered before w;. Trivially, D(v;) also has this property,
so we have shown (4.4) and the theorem is proved. O

Proof of Theorem 4.2.2:

Let X be a path-connected nilpotent CW-complex with finitely generated fun-
damental group and finitely generated homotopy. By Theorem 4.2.3, we have to
show that the minimal model of K (71(X), 1) has no generators in degrees greater
than one. Theorem 4.3.3 implies that it suffices to show that K (m(X)/T,1) has
this property, where T' denotes the torsion group of m(X). I' := m(X)/T is
a finitely generated nilpotent group without torsion. By [66, Theorem 2.18], T
can be embedded as a lattice in a connected and simply-connected nilpotent Lie
group G. Therefore, the nilmanifold G/T" is a K(I',1) and from Theorem 3.2.11
follows that its minimal model has no generators in degrees greater than one. [J



Appendix A

Lists of Lie Algebras

In Table A.1, we give the isomorphism classes of Lie algebras of the simply-
connected solvable Lie groups up to dimension four that possesses lattices. The
designation g; ; means the j-th indecomposable solvable Lie algebra of dimension
i. The choice of the integer j bases on the notation of [56]. The superscripts,
if any, give the values of the continuous parameters on which the algebra de-
pends. (We do not claim that the corresponding Lie groups admit a lattice for
all parameters. We just know that there exist such for certain parameters!)

Table A.1: Solvmanifolds up to dimension four

| | (X, X | cpl. solv. |
| o | | abelian |
| 201 | | abelian |
301 abelian
931 (X, X3] = X, nilpotent
934 (X1, X3] = X3, [Xo, X5] = - X, yes
935 (X1, Xa] = =Xy, [Xp, X3 =X, no
4g, abelian
931D g1 (X2, X3] = X nilpotent
95, S m (X1, X = Xu, [Xo, X3] = X yes
935 D (X1, X5] = =X, [Xp, X5] = X4 no
g4.1 (X0, Xu] = Xy, [ X5, Xy) = X) nilpotent
gyt (X1, Xu] = X4, [ Xy, X4] = pXo, yes
(X3, Xyl = (=p— D X3, —5<p<0
a,e" (X1, Xu] = —2pX1, [Xo, X4] = pX, — X, 1o
(X5, Xyl = Xo +pX3, p>0
Os | [Xo, Xs] = Xu, [Xo, Xu] = X, [X5, Xy] = —X; yes
glo | [Xo, X5] = Xu, [Xo, Xy] = = X5, [X3,Xu] = X, no
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The set of non-isomorphic five dimensional nilpotent Lie algebras is exhausted by
three types of decomposable algebras and six indecomposables which are listed
in Table A.2. The designation is taken from [57].

Table A.2: 5-dimensional nilpotent algebras

| | [Xi, X

o501 abelian

931 D 201 (X, X3] = X4

911D o (X0, Xy] = Xy, [ X5, Xy] = X5
U5.1 (X3, X5] = Xy, [Xy, X5] = X5
g5.2 [(Xo, X5] = Xy, [X3, X5] = X, [Xy, X5] = X5
5.3 [X27X4] = X3, [X2,X5] = Xy, [X4,X5] =X,
5.4 [X27X4] = X, [X37X5] =X
955 (X5, Xu] = Xy, [Xo, X5] = X, [X3, X5] =X
U5.6 (X5, Xy = Xy, [ Xy, X5] = X, [X35,X5] = Xy, [ Xy, X5] = X5

There are 24 classes of solvable and non-nilpotent decomposable Lie algebras in
dimension five. The unimodular among them are the ones in Table A.3.

Table A.3: 5-dimensional decomposable unimodular non-nilpotent algebras

| | (X, Xj] | cpl. solv. |
954 D 201 (X1, X3] = Xo, [Xo, X5] = - Xy yes
gg,5 @D 291 [Xl, Xg] = _XQ, [Xg, Xg] =X no
915D 0 (X1, X4 = —2X7, [Xo, X4] = X, yes
(X5, Xu] = Xo 4+ X5
g e (X1, Xy) = X1, [Xo, Xy] = pXo, yes
(X3, Xa] = (=p— 1) X3, —5<p<0
gigp’p D g1 (X1, Xu] = =2pXy, [Xo, Xy] = pXo — X5, no
(X5, Xy = Xo +pX3, p>0
s 0o [ [Xo, Xa] =X, [X5, Xy] = Xy, [X3, Xy] = —X; yes
92_9 D g1 [XQ,Xg] = Xl, [X27X4] = —Xg, [X37X4] = X2 no

Except for gso @ g1, to each class of algebras there is a connected and simply-
connected solvable Lie group admitting a lattice and has a Lie algebra belonging
to the class.

Mubarakzjanov’s list in 57| contains 33 classes of five-dimensional indecompos-
able non-nilpotent solvable Lie algebras, namely gs57,...,g539. We list the uni-
modular among them in Tables A.4 to A.7.

Note that there is a minor misprint in [57] which has been corrected in the list
below.
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Table A.4: 5-dimensional indecomposable unimodular almost abelian algebras

| | (X, X | cpl. solv. |
ggrgﬂ“ [X17X5] = X1, [X27X5] = pXo, yes
[X?,,Xs] = qX3, [X4,X5] =rXy,
—1<r<q<p<1, pgr#0, p+qg+r=-1
58 [Xo, X5] = Xu, [X3, X5] = X5, [Xy, X5] = =Xy, yes
915).’9_2_1) [X17X5] = X1, [X27X5] = X1 + Xy, [XSaXS] = pXs, yes
Xy, X5] = (=2-—p)Xy, p> -1
9511 (X1, X5] = Xy, [Xo, X5] = X + Xo, yes
(X3, X5] = Xo + X3, [Xy, X5] = —3X]y,
G515 10" (X1, X5] = Xy, [Xo, X5] = (=1 —2¢) Xy, no
(X5, X5] = ¢ X5 — Xy, [ X4, X5] = rX3+ qX4,
—1<¢<0,q#—3, r#0
gg_14 [XQ,X5] = le [Xg,X5] = —X4, [X4,X5] = X3 no
9515 (X1, X5] = Xy, [Xo, X5] = X + Xo, yes
(X5, X5] = — X5, [ Xy, X5] = X3 — X
9;}’6[1 (X1, X5 = X, [Xo, X5] = Xh + Xs, no
[X37X5] = —X3 — qXy, [X4, Xs] = qX3— Xy,
q#0
975)?1_717’T (X1, X5] = pXi — Xy, [Xao, X5] = X + pXy, no
[X?,,Xs] = —pX3 —1rXy, [X4,X5] =rXz — pXy,
r#0
gg.lS [Xl,X5] = —Xg, [XQ,X5] = Xl, no
(X3, X5] = X1 — Xy, [Xy, X5] = X0+ X3

Table A.5: 5-dimensional indecomposable unimodular algebras with nilradical

931D o
‘ ‘ (X, Xj] ‘ cpl. solv. ‘
ghe | (X, Xl = X1, (X1, X5 = (14 p) Xy, [Xs, X5] = X, yes
(X3, X5] = pXs, [Xy, X5] = (—2p—2)Xy, p# -1
9520 [Xo, X = Xi, [ X, X5] = X, [X5, X5] = —XG, yes
(X4, X5 = X4
95_;13 [Xg,Xg] = Xl, [Xl, X5] = 2X1, [XQ,XE)] = X2 + Xg, yes
(X3, X5] = X3, [X4, X5] = —4Xy
a | [Xo, Xs] = X1, [X1, X5] = 2pXy, [Xo, X5] = pXo + X, no
(X3, X5] = —Xo + pX3, [Xy, X5) = —4pXy, p#0
9(5]’;6 [XQ,Xg] = Xl, [XQ,X5] = Xg, [Xg,X5] = —XQ, no
[X4,X5] = EXl, E = +1
95_258 [XQ,Xg] = Xl, [Xl,X5] = —%Xl, [XQ,X5] = —%Xg, yes
[Xg,X5] == X3 + X4, [X4, X5] == X4
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Table A.6: 5-dimensional indecomposable unimodular algebras with nilradical

941
‘ ‘ X, X ‘ cpl. solv. ‘

95 30 [Xo, Xy] = X, [X3, Xy] = Xy, [Xy, X5] = %Xb yes
[X27X5] = _%X27 [X37X5] = _%X37 [X47X5] = X4

Table A.7: 5-dimensional indecomposable unimodular algebras with nilradical
391

| | [Xi, X | cpl. solv. |
9535 (X1, Xa] = X, [ X35, Xy] = — X5, yes
[X27X5] = X27 [X37X5] = _X3
g5 | [X1, Xu] = —2X, [Xo, X4] = Xo, [X3, X4] = X3, no
[X27X5] = _X37 [X37X5] = X2

There are ten classes of decomposable nilpotent Lie algebras in dimension six:
691, 931 D 391, 2031, 41 D 2g; and g5, B gy fori € {1,...6}.

Tables A.8 and A.9 contain the six-dimensional indecomposable nilpotent real Lie
algebras. They base on Morozov’s classification in [54], where nilpotent algebras
over a field of characteristic zero are determined. Note that over R, there is only
one isomorphism class of Morozov’s indecomposable type 5 resp. type 10 and
type 14 resp. 18 splits into two non-isomorphic ones.

Table A.8: 6-dimensional indecomposable nilpotent algebras

| | (X, X
g6.N1 (X1, Xo] = X3, [ X4, X5] = Xy, [ X1, X5] = X6
J6.N2 [X1,X2] = X3, [X17X3] = Xy, [X17X4] = X, [X1,X5] = X
g6.N3 [X1,X2] = X, [X1,X3] = Xy, [X27X3] = X5
J6.N4 [X1,X2] = X5, [X1,X3] = X, [X27X4] = X
J6.N5 [X1,X3] = X5, [X1,X4] = X, [X27X3] = —Xg, [X27X4] = X5
U6.N6 [X1,X2] = X, [X17X3] = Xy, [X17X4] = X, [X2,X3] = X;
g6.N7 (X1, X5] = Xy, [ X0, Xy] = X5, [Xo, X3] = Xe
96.N8 (X1, Xo] = Xs 4+ X5, [ Xy, Xs] = Xy, [Xo, X5] = X
U6.N9 [X1,X2] = X3, [X17X3] = Xy, [Xl,Xs] = X, [X2,X3] = X5
96.N10 [X17X2] = X3, [X17X3] = X;, [X1,X4] = X,

(X, X5] = =X, [Xo, Xy] = X5

J6.N11 [X1,X2] = X3, [X17X3] = Xy, [X17X4] = X, [X2,X3] = Xg
J6.N12 [X1,X3] = Xy, [X1,X4] = X, [X27X5] = X
96.N13 [X1,X2] = Xs, [X17X3] = Xy, [X17X4] = Xg, [X2,X5] = X
O5 N1 (X1, X5] = Xy, [ Xy, Xu] = X, [Xo, X5] = X5, [Xo, X5] = £X5
g6.N15 [X1,X2] = X3+ X, [Xl,Xs] = Xy, [X1,X4] = X, [X2,X5] = X
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Table A.9: 6-dimensional indecomposable nilpotent algebras (continued)

| | X, X |
J6.N16 (X1, X5 = Xy, [ Xy, Xu] = X5, [ X1, X5] = X,
(X, X5] = X5, [Xo, Xy| = X
go.n17 | (X1, Xo] = X, [ Xy, Xs] = Xy, [X4, Xy] = X, [Xo, X5] = Xi
gé‘?}m (X1, Xo] = X3, [ Xy, Xs] = Xy, [ X1, Xy] = X,
[Xo, X3] = X5, [Xo, X5] = £X5
g6.N19 (X1, Xo] = X3, [ Xy, Xs] = Xy, [X1, Xy] = X5,
(X1, X5] = X6, [Xo, X3] = X
J6.N20 (X1, Xo] = X3, [ Xy, X5] = Xy, [X1, Xy] = X5,
(X1, X5] = X6, [Xo, X5] = X5, [Xo, Xy] = X¢
J6.N21 (X1, Xo] = X3, [ Xy, X5] = X, [Xo, X5] = Xy,
(X0, Xy] = X5, [ X5, Xy] = X
J6.N22 (X1, Xo] = X3, [ Xy, X5] = X5, [ X1, X5] = X,
(X0, X5] = Xy, [Xo, Xy] = X5, [X3,Xy] = X¢

Mubarakzjanov’s list in [58] contains 99 classes of six-dimensional indecomposable
almost nilpotent Lie algebras, namely gg.1, . . ., g6.99-

As first remarked by Turkowski, there is one algebra missing. The complete (and
partly corrected) list can be found in the article [11] of Campoamor-Stursberg?,
where the missing algebra is denoted by gg go-

We list the unimodular among this 100 algebras in Tables A.10 to A.23 (where
some minor misprints have been corrected). Note that there is no table with Lie
algebras with nilradical g5 ¢ since the only such algebra is not unimodular.

Table A.10: 6-dimensional indecomposable unimodular almost abelian algebras
| | [X;, X | cpl. solv. |

ggflfﬁ’d (X1, Xe] = X, [Xo, X6| = aX, [X;5, Xe| = 0XG, yes
(X4, Xg] = X4, [ X5, Xg] = dX5,

0<|d <|e|< b <lal <1, a+b+ct+d=—1

!The author wishes to express his gratitude to R. Campoamor-Stursberg for providing him
with copies of [11] and [58].
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Table A.11: 6-dimensional indecomposable unimodular almost abelian algebras
(continued)

| | (X, X)] [c s ]

gg.,g,d [Xl,X()] = CI,Xl, [XQ,X()] = Xl + CI,XQ, [Xg,X()] = Xg, yes
[X4, Xﬁ] = CX4, [X5, Xﬁ] = dX5,

0<|d <] <1, 2a+c+d=-1

dT1
—dtl g

963" (X1, Xo] = —H X, [Xa, Xg] = Xy — HL1X, yes
[X37X6] = X2 - %X?n [X47X6] = X47 [X57X6] = dX57
0<|d <1,
9(;4% (X1, X6] = —iXh (X, Xg] = X1 — iXQ, yes
[X37X6] — X2 — iX37 [X47X6] — X3 — iXﬁlv [X57X6] — X5
gt (X1, Xo] = X1, [Xo, Xg] = aXa, [X3, Xo] = X5+ X, yes
[X47X6] = bX4, [X5,X6] =Xy + bX5, a < b, a-+b= —%

O | [X1, Xg] = aXy, [Xo, Xe| = X1 4+ aXs, [X3, Xe] = Xo+ aXs, | yes
[X47X6] — _%O/X47 [X57X6] = X4 - %CLX57 a # 0
gg.’g’c’p (X1, X¢] = aXy, [Xo, Xg] = bXs, [X3, Xg] = cXs, no
(X4, Xo] = p Xy — X5, [ X5, X6| = Xy + p XG5,
0<|e|<|b|<|al, a+b+c+2p=0
geo” (X1, X6] = aXy, [ X, Xg] = bXs, [X35, X6] = Xy + X5, no
(X4, Xo] = p Xy — X5, [ X5, X6| = Xy + p XG5,
a#0, a+20+2p=0

a,—5a
96.102 [Xl,X6] = CLXl, [XQ,X6] = X1 —+ CLXQ, [X3,X6] = X2 —+ CLX3, no

(X4, Xg] = —2aX, — X5, [X5, Xe] = Xy — 2aX5
gl | [Xq, Xe] = aXq, [Xo, X = pXo — X3, [X5, X6] = Xo+pX5, | no
(X4, Xo] = ¢ Xy — s X5, [X5, Xg] = sXy + ¢XG,

as #0,a+2p+2¢=0
gazllg’p [X17X6] = _4pX17 [X27X6] = ng - X37 no
(X3, Xo] = Xo 4+ pXs, [Xu, Xg] = Xo +pXy — X5,
(X5, Xo] = Xs+ Xy +pX5, p#0

Table A.12: 6-dimensional indecomposable unimodular algebras with nilradical
g3.1 D 2g4

| | (X, Xj] | cpl. solv. |
g [ X Xa] = X0, [X0, Xe] = (a+ )X, [Xo, Xo] = aXo, yes
[X37X6] = bX37 [X47X6] == X47 [X57 XG] = hX57

a#0, 2a+2b+h=-1
9%7?4 [X27X3] = X, [Xl,XG] = (a+b)Xj, [X27X6] = aXy, yes
(X5, Xo| = bX3, [Xu4, Xo] = Xy, [ X5, Xe] = X1+ (a+ ) X5,
a#0, a+b=—1
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Table A.13: 6-dimensional indecomposable unimodular algebras with nilradical
g3.1 @ 2g; (continued)

| | X, X)] [c s |
9615 (X2, X3] = X4, [Xo, X6] = Xy + X, yes
i (X5, Xo] = — X5 + X5, [Xu, Xo] = Xy, [ X5, Xe] = —XG,
9&15770 [Xo, X3] = X1, [ X1, Xg] = —2X1, [Xo, Xe] = —3 X, yes

(X3, Xg] = Xy, [ X5, Xe] = X5,

Oous [Xo, Xa] = Xy, [X1, Xe] = (1 4+ a) X1, [Xo, Xe] = aXs, | yes

(X3, Xo] = X3+ Xy, [Xy, X¢] = Xy,
[X5,X6] = —(2a + 3)X5, a % —%

96 19 (X2, X3] = X1, [X1, Xg] = —3X1, [Xs, Xe] = —5Xo, yes
(X5, Xo] = X3 + Xy, [Xu, Xe] = Xy, [X5,Xg] = X1 — 3 X5

9620 [Xo, X = Xy, [Xy, Xg] = Xu, [X5, Xo] = X5+ Xy, yes

(X4, Xo| = X1 + Xy, [X5, Xe] = —3X5

96.21 [Xo, X3] = Xy, [ X4, Xe| = 20X, [Xo, Xg] = aXo+ X5, | yes

(X3, X6] = aXs, [Xy, Xg] = Xy, [X5,Xe] = —(4a + 1) X5,
1 ¢ % _i
Goh | [Xo X = Xa, (X0, Xl = —3,, [, Xg] = —1X, + X, | yes

(X5, Xo] = =2 X3, [ Xy, Xo] = Xy, [X5, Xe] = X1 — 3 X5
9872—37(1,6 [XQ,Xg] = Xl, [Xl, Xﬁ] = 2CLX1, [XQ, Xﬁ] = CLXQ + Xg, yes
[Xg,X(;] = an + X4, [X4,X6] = CI,X4,
[ X5, X6] = X1 — 5aX5, ca=0
avo ! (X5, X5] = X1, [X1, Xg] = —bX1, yes
(X, Xo] = Xo, [ X3, X6 = —(1+0)X5,
[ X4, Xo| = bXy + X5, [X5, X6| = bX5

gg;ﬁ [X27 X3] = X17 [X27 Xﬁ] = X27 [X37X6] = _X3 yes
[X47 X6] == X5> [X57 Xﬁ] == Xl
Goor " [Xo, X3] = X1, [X1, Xe] = —bX,, [Xo, X¢] = —2bX,, | yes

(X3, X6] = 0X3 + Xy, [Xy, Xe] = 0Xy + X5,
[X57X6] = bX57 b # 0

9628 (X2, X5] = X1, [X1, X6| = 2X1, [Xp, Xo] = Xo + X5, yes
(X5, Xo] = X3, [Xu, Xe] = —2X4 + X5, [X;5, Xg] = —2X5
9;38’1778 [(Xo, Xs] = Xy, [X1, Xe] = —0X, [Xo, Xg] = —20X,, yes

(X3, X6] = 0X3 + Xy, [Xy, Xe] = 0Xy + X5,
[X5, Xﬁ] = €X1 + bX5, eb=0 (7)

gl e T IXG, Xo] = Xy, [ Xy, Xg] = 20Xy, [Xs, Xg] = aXy 4+ X5, | no

[Xg,X(;] = —X2 + an, [X4, Xﬁ] = €X1 + (20, + h)X4,
[X5,X6] = —<6CL + h)X5, a > —ih, eh =0
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Table A.14: 6-dimensional indecomposable unimodular algebras with nilradical
931 @ 2g; (continued)
| | (X, X)] [c s |
9o | [Xo, Xa] = X1, [X1, Xe] = 20X, [X2, Xg] = aXo + X3, | no
(X3, X6] = — X5 + aXs, [Xy, Xg] = —6aXy,
[X5,X6] = X1 + QCLX5, a > 0
ge5 " | [Xo, X3] = X1, [X4, Xo] = 20X, [Xo, Xg] = aXy+ X3, | no
(X3, X6 = —Xo 4+ aX3, [X4, Xo| = —2a Xy,
[X5, XG] = €X1 — QCLX5, ea =10
gg.’g%c [Xo, X3 = X1, [X1,X6] = (a+0) X1, [X2, Xe] =0aXs, | no
(X3, Xo] = 0X3, [Xy, Xo| = c Xy + X5,
[X5,X6] = —X4—|—CX5, CL-'-b—i-CZ 0, a2+b2 % O
giae” | [Xo, Xa] = X1, [X1, Xo] = 20X, [X2, Xg] = aXy + X3, | no
(X3, Xo| = aXs, [Xy, Xo] = —2aXy + X5,
(X5, Xo| = =Xy — 2aX;5
Gomr @ | [Xa, X3] = X1, [X1, Xg] = 20X, [Xo, Xg] = aXa + X3, | no
[X37 Xﬁ] = _X2 + CLX37 [X47 X6] = —QCLX4 + SX57
[X5,X6] = —8X4 — QCLX5, S % 0

98 38 [Xo, X3 = X1, [Xo, Xg] = X3+ Xy, no
(X5, Xe] = —Xo + X5, [ Xy, Xg] = X5, [ X5, Xe] = —X4

Table A.15: 6-dimensional indecomposable unimodular algebras with nilradical
911D
| | X, XJ] [c. s |
Gogo | [XL, Xs) = Xo, [Xu, Xs) = X0, [X1, Xe] = (1 +R)Xy, | yes
[ X, X6] = (2+ h)Xo, [X3, X6 = —(4+ 3h)X5,
(X4, Xo| = hXy, [X5, X6) = X5, h # —%

—3
96.40 (X1, X5] = Xo, [ X4, X5] = Xy, yes
[leXG] = _%Xla [X27X6] = %X27
(X5, Xo] = Xo + 2X5, [Xy, Xg] = —2X4, [ X5, Xe] = X5
61 (X1, X5] = Xo, [ X4, X5] = Xy, yes
[X27X6] = X27 [X37X6] = _X37
(X4, Xo] = X3 — Xy, [X5,X6] = X5
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Table A.16: 6-dimensional indecomposable unimodular algebras with nilradical
941 D g1 (continued)
[ X, X}] [c. s |

.12 (X1, X5] = X, [Xy, X5] = X, yes
[XlaXG] = —§X1, [X27X6] = %X% [X37X6] = X,
(X4, Xo| = —§X4, (X5, X6 = X5+ X5
9(;14 (X1, Xs] = Xo, [Xy, X5] = X7, yes
[XlaXG] = 2X1, [X27X6] = 3Xs, [X37X6] = —T7X3,
(X, Xe] = X, [ X5, X6 =Xy + X5
G517 (X1, Xs] = Xo, [Xa, X5] = X, ves
[X17X6] = X, [X27X6] = Xy, [X37X6] = —3X3,
[X4,X6] = EXQ —|—)(47 € € {O,il}

Table A.17: 6-dimensional indecomposable unimodular algebras with nilradical

951

‘ ‘ [XZ,XJ] ‘ C. S. ‘

gont (X5, Xs] = Xy, [X4, X5] = Xo, yes

(X1, Xo| = X, [Xo, Xo] =1Xs, [X3,X6] = (—1—20) X5,
[(Xy, X = (=2 = D)Xy, [X5,X6] =2(1 +1)X;5

95515 [X?n X5] = Xi, [X4v XS] = Xo, yes

(X1, Xo] = X1, [Xo, X¢] = —3Xy, [X3, Xe] = 4X5,
[X4, XG] == X1 + X4, [X5,X6] — —3X5

[X37 XS] = le [X47 XS] = X27 yes
[leXG] - X17 [X27X6] = _%X27 [X37X6] - X2 - %X37
(X4, Xo] = —2X4, [X5, Xg) = 3X5

9657 (X3, X5] = Xy, [Xy, X5] = Xo, -
[XI’XG] = Xl’ [X27X6] = —§X27 [X37X6] = %X?n
[X47 Xﬁ] = _§X4, [X57X6] = X4 — %XE)

3
9661 (X3, X5] = X1, [X4, Xs] = X, yes
(X1, Xe] = 2X1, [Xo, Xe] = —2X,, [X3, Xg] = X,
[Xy, Xe] = —2X4, [ X5, X¢] = X5+ X5

96.63 (X3, X5] = Xy, [Xy, X5] = Xo, yes

(X1, Xe] = X1, [Xo, Xg] = —Xo, [X3, X¢] = X3,
[X47X6] = X2 - X4

Te.5 (X3, X5] = X1, [X4, Xs] = Xy, yes

[Xl, Xﬁ] = le + XQ, [XQ, Xﬁ] = ZXQ, [Xg, Xﬁ] = —3ZX3 + X4,
[X4,X6] = —3lX,, [X5,X6] = 4lX5

©
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Table A.18: 6-dimensional indecomposable unimodular algebras with nilradical
g5.1 (continued)
| | X, X|] | cpl. solv. |
gép%g [Xg,X5] = Xl, [X4,X5] = Xg, no
(X1, Xo] = pXi + X, [Xo, Xg] = =X + pXo,
(X3, Xo] = —3pX5 + Xu, [Xy, Xo] = —X5 — 3pXy,
(X5, Xe] = 4pXs

Table A.19: 6-dimensional indecomposable unimodular algebras with nilradical

5.2
| | [X;, X | cpl. solv. |

9&711 [X2>X5] = Xy, [X?,,Xs] = Xy, [X4,X5] = X3, yes

(X1, X = 3X1, [Xz, Xe] = §Xa, [X5, Xo] = —§ X,
[X47X6] = _£X4, [X57X6] = X5

Table A.20: 6-dimensional indecomposable unimodular algebras with nilradical
95.3

| | (X, X | cpl. solv. |
Gor6 | [Xo, Xa] = X, [Xo, Xs] = X3, [Xy, Xs] = X, [ yes
(X1, Xe] = — X1, [X3, X¢] = X,
[X47X6] = Xy, [X5,X6] =—X5
go.7s | [Xo, Xa] = X3, [Xo, X5] = Xy, [ X4, X5] = X, yes
[Xl,XG] =X, [X3,X6] = X3,
[X4,X6] == X3 + X4, [X5,X6] == —X5

Table A.21: 6-dimensional indecomposable unimodular algebras with nilradical
95.4

| | (X, X | cpl. solv. |
96 53 [Xo, Xu] = Xa, [X5, X5] = X, yes
[XQ,X6] = lXQ, [Xg,X6] = ng,
(X4, Xo| = =1 X4, [X5,X6] = —X4 — X5
J6.84 (X0, Xu] = Xy, [ X5, X5] = Xy, yes
(X, Xg] = Xy, [Xy, Xo| = =Xy, [X5,Xe] = X5
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Table A.22: 6-dimensional indecomposable unimodular algebras with nilradical
g5.4 (continued)

| | (X, X | cpl. solv. |
aoho [Xo, Xu] = X1, [X3, X5] = X3, cpl. solv.
[Xa, Xo] = poXo + X3, [X3, Xo] = —10Xa + 10X, T
(X4, Xo| = —po Xy + 110 X5, [ X5, Xe| = =10 Xy — 110 X5 | 19 =0
aoo® [(Xo, Xu] = X1, [X3, X5] = X4, cpl. solv.
[XQ,XG] = SXQ, [Xg,Xﬁ] = I/0X5, ﬂ:
(X4, Xo] = —5Xy, [X5, Xg] = 10 X3 Vo =0
ages [Xo, Xu] = X1, [X3, X5] = X4, cpl. solv.
[Xz,XG] = Xy, [X37X6] = 1 X5, II
[X4,X6] = Xg, [X5,X6] = —VOX3, IZ0) % 1 Vg = O
g6.91 [X27X4] = Xy, [X37X5] = Xy, no
(X2, X¢] = Xy, [ X5, X6] = X5,
(X4, Xo] = Xo, [ X5, Xg] = — X3
ggfgg’yo [XQ, X4] = Xl, [Xg,X5] = Xl, no
[X27X6] = VX3, [X37X6] = — o X,
(X4, Xo| = p0 X5, [X5, Xe] = —10Xy
9.9+ [Xo, Xu] = X1, [X3,X5] = X, no
(X, X6| = Xy, [ X3, X¢] = X5,
(X4, Xo| = — X5, [X5,X6] = — X5
ages [(Xo, Xu] = X1, [X3, X5] = X4, cpl. solv.
(X5, Xo] = Xy + 110X5, [ X3, Xo| = 10Xy,
(X4, Xo| = Xo — X3, [Xs5, Xg] = —10 Xy vl < 3

Table A.23: 6-dimensional indecomposable unimodular algebras with nilradical
95.5

‘ ‘ X, X ‘ cpl. solv. ‘
oo | X3, Xa] = X1, [Xo, X5 = X1, [X3,Xs] = X5, | yes

[Xo, Xg] = —Xo, [X;5, X6 = —2X;,
(X4, Xo| = 2X4, [ X5, X6] = X5

The six-dimensional solvable Lie algebras with four-dimensional nilradical were
classified by Turkowski in [75]. We list the unimodular among them in Tables
A.24 — A.26. Note that there is no table with Lie algebras with nilradical g4
since the only such algebra is not unimodular.

The equations for the twenty-fifth algebra in Turkowoski’s list contain a minor
misprint that we have corrected here.
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Table A.24: 6-dimensional indecomposable unimodular algebras with nilradical
49,
| | X, X]] [c s ]
ghed (X5, X1] = aXy, (X5, Xo] = cXo, [X5, X4] = Xy, yes
[Xﬁ,Xl] = le, [Xﬁ,XQ] = dXQ, [X6,X3] = Xg,
at+c=—-1,b+d=-1,ab#0, *+d*#0
Goas - | X Xl = —Xi, [X5, X0 = X0, [X5, X =Xy, | ves
[Xﬁ, Xl] = le, [Xﬁ, XQ] = (—2 — b)Xg,
| (X, Xs] = Xy, [Xe, X = X,
G6.105 (X5, Xa] = —2X4, [X5, Xa] = X5+ X4, yes
(X5, Xy) = Xy, [ X6, Xi] = — X1, [X, Xo] = X)
Goaor | X5 Xa] = =X, [X5, Xo] = =Xo, [X5,X0] = X3 + Xy, | mo
(X5, Xu] = Xy, [ X, Xq] = Xy, [X6, Xo] = —X)
g6 (X5, Xi] = aXy, [X5, Xo] = —aXs, [ X5, Xs] = Xy, no
[Xﬁ,Xl] = le, [Xﬁ,XQ] = dXQ, [X6,X3] = Xg,
[XG,X4] :X4, CL2+b2 % 0, CL2—|—d2 §£ 0, b+d= -2
o114 (X5, Xi] = aXy, [X5, Xs] = —§X5+ Xy, no
(X5, Xu] = = X5+ § X4, [X6, Xu] = — X1,
[ X6, Xo] = Xo, a #0
o " (X5, X1] = X1, [X5, Xo] = Xo, no
[X5,X3] - —X3 —|— bX4, [X5,X4] - —ng - X4,
[XG,Xl] = CX1 -+ XQ, [X6,X2] = —X1 + CXQ,
[Xﬁ,Xg] = —CXg, [Xﬁ,X4] = —CX4, b 7& 0
96116 (X5, X1] = Xo, [ X5, X5] = Xy, [X5, Xu] = =X, no
(X6, X1] = X1, [Xg, Xp] = Xo,
(X6, X3] = — X5, [X6, Xy = - X}
HE (X5, X1] = Xa, [X5, Xa] = —X1, [X5,X5] =0Xs, | mo
(X5, Xu] = —bX5, [Xg, X1] = X1, [X6, Xo] = Xo,
[XG,Xg] == —Xg, [XG,X4] — —X4, b §£ O

o150 (X5, Xo] = —Xo, [X5, Xu] = X4, [Xs, Xe] = X1, yes
i [X67X2] = _X17 [X67X3] = X3
90 195 (X5, X3 = X4, [ X5, Xu] = — X3, [X5, Xg] = X7, no

[X67X2] = _2X27 [X67X3] = X37 [X67X4] = X4

Table A.25: 6-dimensional indecomposable unimodular algebras with nilradical
931 Do

‘ ‘ (X, X ‘ c. s. ‘
Go 10 | [ X2, Xs] = X1, [X5, X1] = X1, [Xs5, Xo] = Xy, | yes
(X5, Xu] = —2Xy, [Xe6, Xu] = X1,
(X6, X3] = X3, [X6, X4] = —2X,
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Table A.26: 6-dimensional indecomposable unimodular algebras with nilradical
931 D g1 (continued)

| | [Xi, X)] | c. s |
Goas | (X2, Xs] = X1, [Xs5, Xo] = X, [X5,X3] = —X1, | no
(X6, X1] = 2X1, [Xe, Xo] = Xo,
[X67X3] = X37 [X67X4] == _4X4

In the introduction of [58], Mubarakzjanov quotes his own result that a six-
dimensional solvable Lie algebra with three-dimensional nilradical is decompos-
able. Therefore, by Proposition 3.2.5, we have listed all unimodular indecompos-
able solvable Lie algebras of dimension six.

The first Betti numbers of the six-dimensional unimodular indecomposable Lie
algebras are listed in Tables A.27 — A.29. The word “always” means that the
certain value arises independent of the parameters on which the Lie algebra de-
pends, but we suppose that the parameters are chosen such that Lie algebra is
unimodular. The word “otherwise” in the tables means that this value arises for
all parameters such that the Lie algebra is unimodular and the parameters are
not mentioned in another column of the Lie algebra’s row.

Table A.27: by(ge.;) for ge; unimodular

i | bi=1 | by =2 | by =3 |
1 always - -
2 a#0 a=0 -
3 d+# —1 d=—1 -
4 always - -
6 a,b#0 |Ja=—3Ab=0 -
7 always - -
8 always - -
9 b+#0 b=20 -
10 a#0 a=0 -
11 always - -
12 always - -
13[0#0AKh#0 otherwise a=—3Ab=h=0
14 otherwise a= —% Ab=0 -
15 always - -
17 - always -
18 a#0 a=0 -
19 always - -
20 - always -
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Table A.28: by(g¢.;) for g¢; unimodular (continued)

[i] Ww=1 [ b=2 [ h=38[h=4] b=5
21 a0 a=0 N - -
22 always - - - -
23 a+#0 - a=20 - -
25 b¢ {—1,0} be{-1,0} - - _
26 - always - _ _
27 always - _ : 3
28 always - - - -
29 b#0 - b=0 - -
32| h¢{-2a,—6a} otherwise - _ ;
33 a 75 0 - a=0 - _
34 a+#0 - a=20 - -
35 a,b#0 otherwise - _ i
36 a0 a=0 N . -
37 always - - - -
38 always - - - -
39 h #0 h=0 - - -
40 always - - - -
41 always - _ N -
42 always - _ 3 -
44 always - _ 3 -
47 - always - _ -
54 [ 1¢{-2-1,-1} |le{-2-1—2 _ N -
95 always - - - -
26 always - - - -
o7 always - - - _
61 always - - - -
63 - always - _ -
65 [ #0 - =0 - N
70 p#0 p=0 _ - -
71 always - i} B -
76 always - - - -
78 always - - - _
83 [#0 - - =0 _
84 - always - _ -
88 | po#0Vrg#0 - - - Lo =15 =0
89| mw#0As#0 - otherwise - =s=0
90 Yo # 0 - vy = 0 - -
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Table A.29: by(g¢.;) for ge; unimodular (continued)

91 always - - - -
92 | o #0A vy #0 - otherwise - o =19 =0
92* always - - - -
93 120 7& 0 - Vg = 0 - -
94 always - - - -
101 - always - - -
102 - always - - -
105 - always - - -
107 - always - - -
113 - always - - -
114 - always - - -
115 - always - - -
116 - always - - -
118 - always - - -
120 - always - - -
125 - always - - -
129 - always - - -
135 - always - - -
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Appendix B

Integer Polynomials

In this thesis, we often try to use necessary conditions for a matrix to be con-
jugated to an integer matrix. We state briefly the used results. Vice versa, we
sometimes want to find integer matrices with given minimal polynomial. We also
present a few constructions.

Let be n € Ny, K a field and A € M(n,n;K). The characteristic polynomial
of A is the monic polynomial

Pu(X) = det(X id — A) € K[X],

and the minimal polynomial m4(X) is the unique monic divisor of lowest degree of
P4(X) in K[X] such that m4(A) = 0. (Note, by the theorem of Cayley-Hamilton,
one has P4(A) =0.)

If two matrices are conjugated, then they have the same characteristic resp.
minimal polynomials.

A € K is called root of A if X is a root of the characteristic polynomial,
considered as polynomial in K[X], where K denotes the algebraic closure of K.

The next proposition follows directly from [49, Corollaries XIV.2.2, XIV.2.3|.

Proposition B.1. Let n € N,. If A € M(n,n;C) and B € M(n,n;Q) are
congugated via an element of GL(n,C), then holds Po(X) = Pp(X) € Q[X],
ma(X) =mp(X) € Q[X] and ma(X) divides Pa(X) in Q[X]. O

Proposition B.2. If P(X) € Z[X], m(X) € Q[X] are monic polynomials and
m(X) divides P(X) in Q[X], then holds m(X) € Z[X].

Proof. Let P(X),m(X) be as in the proposition and f(X) € Q[X] non-
constant with P(X) = f(X)m(X). There exist k,l € Z\ {0} such that

EAX) =) a X' Im(X)=> bX' € Z[X]

119
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are primitive. (An integer polynomial is called primitive if its coefficients are
relatively prime.) We have

K P(X) = (Z az-X")(Z b X7)

and claim kl = +1.
Otherwise, there is a prime p € N that divides kl. Since the coefficients of
k f(X) resp. Im(X) are relatively prime, there are minimal ig, jo € N such that

p does not divide a;, resp. bj,.
The coefficient of X% of kI f(X)m(X) is

aiobjo + aio—lbjo+1 + aio+1bjo—1 +...

and p divides each summand except the first. But since p | kl, p divides the whole
sum. This is a contradiction. U

Theorem B.3. Let n € Ny and A € M(n,n;C) be conjugated to an integer
matriz. Then holds Pa(X),ma(X) € Z[X].

Proof. This follows from the preceding two propositions. U

Lemma B.4 ([40, Lemma 2.2|). Let P(X) = X® - kX?+1X — 1€ Z[X].
Then P has a double root Xo € R if and only if Xo =1 or Xg = —1 for
which P(X) = X3-3X24+3X -1 or P(X) = X3+ X%2— X —1 respectively. []

Proposition B.5 ([38, Proposition 5|). Let \; € Ry with X\, +5 = m; € Ny and
m; > 2 fori e {1,2}.
Then there exists no element in SL(3,7Z) with roots A1, Ae, ﬁ O

Proposition B.6. Let P(X) = X*—mX3+ pX? —nX + 1 € Z[X].

Then P has a root with multiplicity > 1 if and only if the zero set of P
equals {1,1,a,a7'}, {-1,-1,a,a7 '}, {a,a™,a,a™ '} or {a,—a™' a,—a"t} for
fized a € C.

Proof. The most part of the proof was done by Harshavardhan in the proof
of |38, Propositon 2|.
We set S := m? +n? and T := mn and get the discriminant D of P(X) as

D = 16p* —4Sp® + (T? — 80T — 128)p* + 18S(T + 8)p (B.1)
+256 — 1927 + 4872 — 4T3 — 2752

Note that P(X) has a root of multiplicity > 1 if and only if D = 0. Solving
D =0 for S, we see

2 1 8 2
S = —— P4+ pT +—p+ — 2 37T +12)3
570"+ 5Pl + 5p 27\/(p +12)3,
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and since S and T are integers, there is ¢ € Z with
p?—=3T+12 = ¢,

which implies

1
S = 4p+ ﬁ(p3 — 3pq® £+ 2¢%) (B.2)
T = %(p2 —¢* +12).

We first consider the plus sign in equation (B.2). Then one has

1
(m+n)* = S+2T=ﬁ(p+2q+6)(p—q+6)2,

1
(m—n)*> = 5—2T=2—7(p+2q—6)(p—q—6)2,

and this implies the existence of k;,l; € N, 7 = 1,2, such that

3k = (p+2¢+6)k3,
317 = (p+2q—6).

We shall show: |m| = |n|

[If [, = 0, the claim is proved. Therefore, we can assume [y # 0.

Case 1: k=0

Then holds k; = 0 and this means S + 27 = 0, i.e. (m +n)? = 0, so we have
m= —n.

Case 2: ky £ 0

We write k := % and [ := 4. Then holds

3k = p+2q+6€7Z,
3 = p+2¢—6¢Z,

and 3(k* — [2) = 12. Therefore, we have k> — 12 =4, s0 k* =4, 1> =0, i.e. [; = 0,
S—2T'=0and m =n. |
Now, consider the minus sign in equation (B.2). Then one has

1
(m+n)* = S+2T=2—7(p—2q+6)(p+q+6)2,

1
(m—n)* = S=2T=(p—2¢-6)(p+q—6),
and shows analogously as above |m| = |n|.
We have shown: If P(X) has a multiple root, then holds m = +n.
If m = n, then one calculates the solutions of D = 0 in (B.1) as the following
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(i) p=—-2+2m,
(ii)) p=—2—2m,
(iii) p=2+ 7,
and if m = —n, then the real solution of D =0 in (B.1) is
(iv) p=—-2+ mTQ.

Moreover, a short computation yields the zero set of P(X) in the cases (i) —
(iv)as {1,1,a,a7}, {—1,—-1,a,a7 '}, {a,a™t,a,a™ '}, {a,—a"', a, —a~1}, respec-
tively. U

Proposition B.7 (|1, Proposition 4.4.14]). Let K be a field and

m(X) = X"+ a1 X"+ +a X +ap € K[X]

00 ... 00 —ag
10 ... 00 —a
01 ... 00 —Q9
a monic polynomial. Then L o . has minimal polynomial
00 ... 10 —Anp—2
00 ... 01 —Ap—1
m(X). O

If one is willing to construct an integer matrix with given characteristic and
minimal polynomial, one always can chose any matrix M which has the desired
polynomials and try to find an invertible matrix 7" such that T-'MT has integer
entries. Of course, this can be difficult. In the case of 4 x 4 - matrices we have
the following easy construction.

Proposition B.8 (38, Section 2.3.1]).

(i) Let integers m,n,p € Z be given.

Choose myq,...,my € Z such that E?:1 m; = m and set

= —mip+mimy +mims +mimy +mn — 1,
b = (—mg —my)p+mimi + mimams + mymomy + mims + mamy
+m%77’l2 + m%TTlg + m§m4 +n,
C = MpMg + MMz + MMy + MaMs3 + MaMy + M3My — P.
mq 0 0 a
1 meo 0 b
0 1 ms

0 0 1 Ty
as characteristic polynomial.

Then the matriz has X* — mX3 +pX? —nX +1



(ii) Let m € 27 be an even integer.

Then the matriz

has the characteristic polynomial (X? — X + 1)%, and

minimal polynomaal.

O~ O3

(X2 -

— OnF o

-1 0

0 -1

0 O

0 O
27X +1) as
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Appendix C

Group Extensions

Definition C.1. A group extension of a group @) by a group N is a short exact
sequence of groups {1} = N —- G 5 Q — {1}.

If s: @ — G is a group homomorphism with 7 o s = id, then s is called
section. In this case, we say that the extension is split.

Proposition C.2. A group extension {1} — N — G 5 F — {1} of a free group
F' is split.

Proof. Let {x;}; the set of generators of F'. Choose g; € G such that 7(g;) = z;
and define a section s: F' — G by s(z;) = g;. O

Lemma C.3. Let {1} = A 5 G — Q 5 {1} be an extension by an abelian
group A. Then

g.a:=1i"(g, i(a)-g;") with any g, € 7" ({q})
defines a natural Q-module structure on A. O

Lemma C.4. Let {1} - N LG5 Q- {1} be a split group extension with
section s: Q — G. Then

pw: Qx N =N, pu((g,n) =i (s(q) i(n)-s(q)™"),

defines an action of QQ on N by group automorphisms.
If N is abelian, the action coincides with the natural QQ-module structure of

N. O
Recall the definition of the semidirect product @ x, N as set ) x N with
group structure (q1,n1)(q2,n2) = (q1q2, (g5 ", n1)n2).

Lemma C.5. Let N,Q be groups and pi: QQ x N — N an action by group auto-
morphisms.

Then {1} — N LS Q x, N o Q — {1} is a split group extension, where
ixn(n) = (n,eq) and m«((¢,n)) = q. O

125
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Definition C.6. Let {1} - N — G}, — @ — {1}, k € {1,2}, be group exten-
sions. They are called equivalent, if there is a group homomorphism ¢: G; — G»
such that the following diagram commutes:

{1} N Gy Q {1}
id id
{1} - N - Gy - Q - {1}

Note, by the 5-Lemma, ¢ is necessary an isomorphism.

Proposition C.7. Let {1} - N La5 Q> {1} be a split group extension
with section s: QQ — G.

Then the extension is equivalent to the extension of N by QQ which is given by
the Lemmata C.4 and C.5.

Proof. Define ¢: @ x,, N — G by f(q,n) = s(q)-i(n). ¢ is a homomorphism
since

e((q1,m1)(q2,m2)) = @((qgq2, gy ' ma)na)) = s(quae) - i(ulgy ', n1)ng)
= s(qige) - i(p(gz ", na)na)
= s(q1) - 5(q2) - 5(q2)~" - i(ny) - s(qa) - i(n)
= ¢((q1,51)) - (g2, m2)).

Further, ¢ satisfies the commutativity condition of the last lemma

(i (n,eq)) = s(eq) -i(n) = i(n),
)

m(¢((g,n))) = 7(s(q) - i(n)) = 7(s(q)) - (i

Therefore, the proposition follows. O

-~
=

Definition C.8. Let {0} — 4 - Q x A — Q — {1} be a split extension by an
abelian group A. Two sections s1, $9: @ — @ X A are called A-equivalent if and
only if there is an element a € A such that

s1(q) = i(a) - sa(q) - i(a) ™"
for all ¢ € Q.

Definition C.9. Let () be a group and A a ()-module.
A 1-cocycle of QQ with coefficients in A is a map f: Q — A with

vqmeQ f(QIq2) = f(QZ) + C.Iz_l-f(CJl)
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The set Z*(Q, A) of 1-cocycles is an abelian group with obvious group structure.
A 1-boundary of Q with coefficients in A is a map

faor @ — A, f.(q) =q ".a— a with fixed a € A.

The set BY(Q, A) of 1-boundaries forms a subgroup of Z'(G, A).
The group HY(G,A) := ZY(G,A)/BY(Q, A) is called first cohomology group
of Q with coefficients in A.

Theorem C.10 (|9, Propsition IV.2.3]). Let {0} - A — Q x A — Q — {1} be
a split extension by an abelian group A. Consider A with its natural Q-module
structure.

Then the elements of H'(Q, A) are in 1 — 1 correspondence with the set of
A-conjugacy classes of sections s: QQ — Q X A via [f] — [s(q) = (q, f(q))] O

Definition C.11. Let @) be a group and A a ()-module.
A 2-cocycle of Q with coefficients in A is a map f: QQ X Q — A such that for

all ¢1,q2,93 € Q

¢ (a1, @) + [, a3) = flar, 2a3) + fa2, q3)

holds. The set Z%(Q, A) of 2-cocycles is an abelian group with obvious group
structure.
A 2-boundary of QQ with coefficients in A is a map

o @xQ — A
(¢1:02) — @5 "h(q) — h(q1g2) + h(go)

with a fixed map h: Q — A.

The set B?(Q, A) of 2-boundaries forms a subgroup of Z%(G, A).

The group H?(G, A) := Z2(G, A)/B*(Q, A) is called second cohomology group
of Q with coefficients in A.

Theorem C.12 (|9, Theorem 1V.3.12]). Let Q) be a group and A a Q-module.
Then the elements of H*(Q,A) are in 1 — 1 correspondence with the set of
equivalence classes of extensions of Q by A wvia [f] — [Ef]. E; denotes the
extension ‘
{0} — A -G Q — {1},

where Gy := @ x A with group structure given by

(q1,a1) (g2, a2) = (g2, @5 a1 + as + f(q1, ),

and inclusion i(a) = (eg, a) as well as projection 7(q,a) = q. O
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