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Vorwort

Bis in die siebziger Jahre war ni
ht bekannt, ob es kompakte symplektis
he Man-

nigfaltigkeiten gibt, die keine Kähler-Struktur tragen. Das erste Beispiel einer sol-


hen Mannigfaltigkeit wurde 1976 von W. P. Thurston angegeben. Er konstruierte

in [73℄ eine symplektis
he vier-dimensionale Nilmannigfaltigkeit (d.i. ein kompak-

ter Quotient einer zusammenhängenden und einfa
h-zusammenhängenden nilpo-

tenten Liegruppe na
h einer diskreten Untergruppe) mit erster Betti-Zahl b1 = 3.
Aus topologis
hen Gründen kann diese Mannigfaltigkeit ni
ht Kählers
h sein,

denn die Betti-Zahlen b2i+1 von ungeradem Grad sind für Kähler-Mannigfaltig-

keiten gerade. L. A. Cordero, M. Fernández und A. Gray haben in den a
htziger

Jahren weitere Beispiele angegeben (vgl. [13℄), die aber teilweise gerade Betti-

Zahlen haben. Die Autoren weisen na
h, daÿ ihre Beispiele ni
ht formal sind.

Hieraus folgt dann, daÿ sie au
h ni
ht Kählers
h sein können, denn P. Deligne,

P. Gri�ths, J. Morgan und D. Sullivan haben in [16℄ bewiesen, daÿ Formalität

notwendig für die Existenz von Kähler-Strukturen ist.

Formalität ist eine wi
htige Eigens
haft eines Raumes, die es ermögli
ht,

rational-homotopis
he Informationen aus der Kohomolgie-Algebra zu gewinnen.

Die o.g. Arbeit [13℄ zeigt insbesondere, daÿ symplektis
he Mannigfaltigkeiten i.a.

ni
ht formal sind. Auÿerdem stellen Methoden der rationalen Homotopie Mög-

li
hkeiten bereit, kompakte symplektis
he ni
ht-Kählers
he Mannigfaltigkeiten zu

konstruieren.

Es sei angemerkt, daÿ es formale symplektis
he Mannigfaltigkeiten gibt, die

den Kohomologietyp einer Kähler-Mannigfaltigkeit haben und trotzdem ni
ht

Kählers
h sind. Ein Beispiel hierfür haben M. Fernández und A. Gray [25℄ gege-

ben.

I
h gebe im ersten Kapitel dieser Arbeit einen kurzen Überbli
k über die Theo-

rie der minimalen Modelle, insoweit sie zur De�nition des Begri�es der Formalität

notwendig ist.

M. Fernández und V. Muñoz haben in dieser Dekade eine Arbeit [28℄ über die

Geographie formaler Mannigfaltigkeiten ges
hrieben. In Abhängigkeit der Dimen-

sion und der ersten Betti-Zahl b1 sagen sie genau, wann eine ges
hlossene formale

Mannigfaltigkeit existiert. Im zweiten Kapitel versu
he i
h, dieselbe Fragestel-

lung für Mannigfaltigkeiten, die zusätzli
h eine symplektis
he Struktur tragen,

zu klären. Dies ist zunä
hst nur mit Ausnahme des se
hs-dimensionalen Falles
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mit b1 = 1 gelungen. Ferner kann man au
h eine Aussage über die Geographie

formaler ges
hlossener Kontaktmannigfaltigkeiten mit erster Betti-Zahl gröÿer

oder glei
h zwei herleiten. Dies stelle i
h im zweiten Kapitel ebenfalls dar.

In der Ho�nung, den o�en geblieben Fall des se
hs-dimensionalen Raumes mit

b1 = 1 beantworten zu können, habe i
h mi
h dem Studium von Solvmannigfal-

tigkeiten zugewendet, wel
hes den Inhalt des dritten Kapitels bildet.

Nilmannigfaltigkeiten stellen eine rei
hhaltige Quelle symplektis
her Mannig-

faltigkeiten, die ni
ht Kählers
h sind, dar. Tatsä
hli
h ist eine Nilmannigfaltigkeit

genau dann formal, wenn sie ein Torus ist. (Und genau in diesem Fall trägt sie

au
h eine Kähler-Struktur.) M. a. W. ist jede symplektis
he ni
ht-torale Nil-

mannigfaltigkeit ni
ht formal. Nilmannigfaltigkeiten helfen bei der Su
he na
h

einer Mannigfaltigkeit mit b1 = 1 jedo
h ni
ht weiter, da b1 für sie immer grö-

ÿer als eins ist. Der Begri� der Solvmannigfaltigkeit ist eine Verallgemeinerung

desjenigen der Nilmannigfaltigkeit. Eine Solvmannigfaltigkeit ist ein kompakter

Quotient aus einer zusammenhängenden und einfa
h-zusammenhängenden auf-

lösbaren Liegruppe na
h einer diskreten Untergruppe, und sol
he können au
h

erste Betti-Zahl glei
h eins haben. Es ers
hien mir daher natürli
h, unter den

Solvmannigfaltigkeiten na
h einem Beispiel einer ni
ht-formalen symplektis
hen

se
hs-Mannigfaltigkeit mit b1 = 1 zu su
hen.

In diesem Zusammenhang habe i
h dann au
h versu
ht, die bisher bekann-

te Klassi�kation niedrig-dimensionaler Solvmannigfaltigkeiten bis zur Dimension

se
hs zu erweitern und den Aspekt der Formaltität hinzuzufügen.

Im se
hs-dimensionalen Fall habe i
h mi
h auf die Betra
htung von symplek-

tis
hen Räumen bes
hränkt und unter diesen eine ni
ht-formale Mannigfaltigkeit

mit b1 = 1 gefunden.

Neben der Formalität und der Tatsa
he, daÿ die Betti-Zahlen ungeraden

Grades gerade sind, erfüllen kompakte Kähler-Mannigfaltigkeiten die sog. star-

ke Lefs
hetz-Bedingung. Bezei
hnet ω eine symplektis
he Form auf einer 2n-
dimensionalen kompakten Mannigfaltigkeit M , so lautet die starke Lefs
hetz-

Bedingung, daÿ das Cup-Produkt mit [ω]k für alle k ∈ {0, . . . , n − 1} einen

Isomorphismus Hn−k(M,R) → Hn+k(M,R) de�niert.
Zum Abs
hluÿ von Kapitel 3 gehe i
h der Frage na
h, wel
he Kombinationen

der drei genannten Eigens
haften für symplektis
he Solvmannigfaltigkeiten erfüllt

bzw. ni
ht erfüllt sein können und beantworte zwei Fragen, die in der Arbeit [47℄

von R. Ibáñez, Y. Rudiak, A. Tralle und L. Ugarte o�en geblieben waren.

St. Halperin nennt in [37℄ ein Ergebnis, das die Bere
hnung der höheren Ho-

motopiegruppen einer gewissen Klasse von Räumen, die die der nilpotenten um-

s
hlieÿt, mittels der Theorie der minimalen Modelle ermögli
ht. Den Na
hweis

dessen, der in [37℄ ni
ht dargestellt ist, werde i
h im vierten Kaitel dieser Arbeit

erbringen.

Sehr herzli
h danke i
h Herrn Prof. H. Geiges für die Mögli
hkeit, diese Arbeit

unter seiner Anleitung zu s
hreiben. I
h habe von vielen anregenden Gesprä
hen
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und wertvollen Hinweisen, die mir halfen, neue Aspekte zu berü
ksi
htigen, pro-

�tiert. Seine Unterstützung, die Mögli
hkeit, ihm jederzeit Fragen zu stellen, und

der gewährte Freiraum bei der Erstellung dieser Arbeit haben einen maÿgebli
hen

Anteil an ihr.

Mein weiterer Dank gilt meinem Diplomvater Herrn Prof. Dr. W. Henke, der

mi
h die Mathematik gelehrt und die Begeisterung für sie in mir gewe
kt hat.

Köln, im Dezember 2008 Christoph Bo
k
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Abstra
t

Topology of symple
ti
 manifolds is nowadays a subje
t of intensive development.

The simplest examples of su
h manifolds are Kähler manifolds and an important

property of the latter is their formality. Thus, a possible way of 
onstru
ting

symple
ti
 manifolds with no Kähler stru
ture is to �nd su
h ones whi
h are not

formal.

M. Fernández und V. Muñoz 
onsidered in [28℄ the question of the geography

of non-formal 
ompa
t manifolds. Given (m, b1) ∈ N+ ×N, they showed whether

or not there are m-dimensional non-formal 
ompa
t manifolds with �rst Betti

number b1.
The aim of this thesis is to answer the same question for 
ompa
t symple
ti


manifolds. After setting the s
ene in the �rst 
hapter, this is done in the se
ond

one � ex
ept for the six-dimensional 
ase with b1 = 1. The third 
hapter deals

with solvmanifolds, espe
ially with those of dimension less or equal to six, be
ause

I hoped to �nd the missing example among them, and in fa
t there is a six-

dimensional symple
ti
 solvmanifolds whi
h is non-formal and satis�es b1 = 1.
Besides formality, 
ompa
t Kähler manifolds have even odd-degree Betti num-

bers and they satisfy the so-
alled Hard Lefs
hetz 
ondition. To end Chapter 3, I

deal with relations between this three properties for symple
ti
 solvmanifolds. I

am able to give an answer to two questions that had remained open in the arti
le

[47℄ of R. Ibáñez, Y. Rudiak, A. Tralle and L. Ugarte.

Furthermore, in the last 
hapter I prove a result that allows an easy 
ompu-

tation of the higher homotopy groups of a 
lass of spa
es 
ontaining all nilpotent

ones. Without giving a proof, St. Halperin stated it in the introdu
tion of [37℄.

I would like to express my sin
ere gratitude to my supervisor Prof. H. Geiges

for giving me the possibility to parti
ipate in his group and to write this thesis

under his guidan
e. I have pro�ted greatly from his suggestions and various 
on-

versations with him. Without his kind support this dissertation would not have

been written.

Moreover, I wish to thank Prof. Dr. W. Henke who was the supervisor of my

diploma thesis. He taught me mathemati
s and woke up the enthusiasm for it.

Köln, De
ember 2008 Christoph Bo
k
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Chapter 1

Introdu
tion

The aim of this 
hapter is to introdu
e formal manifolds and to quote some of their

properties. (Throughout this thesis a manifold is assumed to have no boundary,

i.e. a 
ompa
t manifold is the same as a 
losed manifold.) Given a manifold

M , one 
an 
onsider the 
omplex of its di�erential forms (Ω(M), d), whi
h has

the stru
ture of a so-
alled di�erential graded algebra. Su
h di�erential graded

algebras are the main obje
ts of rational homotopy theory, and the de�nition

of the formality of M will purely depend on rational homotopi
 properties of

(Ω(M), d).

The idea of rational homotopy is to ignore the torsion in standard homotopy

theory. Sullivan [71℄ showed in the 1960s that not only the simpli
ial homology

H∗(X,Z) and the higher homotopy groups πi(X), i > 1, of a simply-
onne
ted

spa
e X 
an be lo
alised to H∗(X,Q) and πi(X) ⊗ Q. It is also possible to

geometri
ally lo
alise the spa
e X to a spa
e X0 via a 
ontinuous map X → X0

whi
h indu
es isomorphisms H∗(X,Q) → H∗(X0,Z) and πi(X) ⊗ Q → πi(X0).
The rational homotopy type of X is then de�ned as the weak homotopy type of

X0. A prin
ipal feature of rational homotopy theory, as developed by Quillen

[65℄, is that the geometri
 lo
alisation X0 
an be understood within an entirely

algebrai
 
ategory. This led to Sullivan's 
hoi
e [72℄ of a parti
ular algebrai



ategory that models exa
tly the rational homotopy type of a spa
e. It is to this


ategory � the 
ategory of minimal di�erential graded algebras � that we turn

now.

1.1 Di�erential graded algebras and formality

Let K be a �eld of 
hara
teristi
 zero. A di�erential graded algebra (DGA) is a

graded K-algebra A =
⊕

i∈N Ai
together with a K-linear map d : A → A su
h

that d(Ai) ⊂ Ai+1
and the following 
onditions are satis�ed:

(i) The K-algebra stru
ture of A is given by an in
lusion K →֒ A0
.

1



2 CHAPTER 1. INTRODUCTION

(ii) The multipli
ation is graded 
ommutative, i.e. for a ∈ Ai
and b ∈ Aj

one

has a · b = (−1)i·jb · a ∈ Ai+j
.

(iii) The Leibniz rule holds: ∀a∈Ai∀b∈A d(a · b) = d(a) · b+ (−1)ia · d(b)

(iv) The map d is a di�erential, i.e. d2 = 0.

Further, we de�ne |a| := i for a ∈ Ai
.

The i-th 
ohomology of a DGA (A, d) is the algebra

H i(A, d) :=
ker(d : Ai → Ai+1)

im(d : Ai−1 → Ai)
.

If (B, dB) is another DGA, then a K-linear map f : A → B is 
alled mor-

phism if f(Ai) ⊂ Bi
, f is multipli
ative, and dB ◦ f = f ◦ dA. Obviously, any

su
h f indu
es a homomorphism f ∗ : H∗(A, dA) → H∗(B, dB). A morphism of

di�erential graded algebras indu
ing an isomorphism on 
ohomology is 
alled

quasi-isomorphism.

De�nition 1.1.1. A DGA (M, d) is said to be minimal if

(i) there is a graded ve
tor spa
e V =
(⊕

i∈N+
V i
)
= Span {ak | k ∈ I} with

homogeneous elements ak, whi
h we 
all the generators,

(ii) M =
∧
V ,

(iii) the index set I is well ordered, su
h that k < l ⇒ |ak| ≤ |al| and the

expression for dak 
ontains only generators al with l < k.

We shall say that (M, d) is a minimal model for a di�erential graded al-

gebra (A, dA) if (M, d) is minimal and there is a quasi-isomorphism of DGAs

ρ : (M, d) → (A, dA), i.e. ρ indu
es an isomorphism ρ∗ : H∗(M, d) → H∗(A, dA)
on 
ohomology.

The importan
e of minimalmodels is re�e
ted by the following theorem, whi
h

is taken from Sullivan's work [72, Se
tion 5℄.

Theorem 1.1.2. A di�erential graded algebra (A, dA) with H
0(A, dA) = K pos-

sesses a minimal model. It is unique up to isomorphism of di�erential graded

algebras.

We quote the existen
e-part of Sullivan's proof, whi
h gives an expli
it 
on-

stru
tion of the minimal model. Whenever we are going to 
onstru
t su
h a

model for a given algebra in this thesis, we will do it as we do it in this proof.

Proof of the existen
e. We need the following algebrai
 operations to �add�

resp. �kill� 
ohomology.



1.1. DIFFERENTIAL GRADED ALGEBRAS AND FORMALITY 3

Let (M, d) be a DGA. We �add� 
ohomology by 
hoosing a new generator x
and setting

M̃ := M⊗
∧

(x), d̃|M = d, d̃(x) = 0,

and �kill� a 
ohomology 
lass [z] ∈ Hk(M, d) by 
hoosing a new generator y of

degree k − 1 and setting

M̃ := M⊗
∧

(y), d̃|M = d, d̃(y) = z.

Note that z is a polynomial in the generators of M.

Now, let (A, dA) a DGA with H0(A, dA) = K. We set M0 := K, d0 := 0 and

ρ0(x) = x.
Suppose now ρk : (Mk, dk) → (A, dA) has been 
onstru
ted so that ρk indu
es

isomorphisms on 
ohomology in degrees ≤ k and a monomorphism in degree

(k + 1).
�Add� 
ohomology in degree (k + 1) to get a morphism of di�erential graded

algebras ρ(k+1),0 : (M(k+1),0, d(k+1),0) → (A, dA) whi
h indu
es an isomorphism

ρ∗(k+1),0 on 
ohomology in degrees ≤ (k + 1). Now, we want to make the indu
ed

map ρ∗(k+1),0 inje
tive on 
ohomology in degree (k + 2) .

We �kill� the kernel on 
ohomology in degree (k+2) (by non-
losed generators

of degree (k+1)) and de�ne ρ(k+1),1 : (M(k+1),1, d(k+1),1) → (A, dA) a

ordingly.
If there are generators of degree one in (M(k+1),0, d(k+1),0) it is possible that this
killing pro
ess generates new kernel on 
ohomology in degree (k+2). Therefore,
we may have to �kill� the kernel in degree (k + 2) repeatedly.

We end up with a morphism ρ(k+1),∞ : (M(k+1),∞, d(k+1),∞) → (A, dA) whi
h
indu
es isomorphisms on 
ohomology in degrees ≤ (k+1) and a monomorphism

in degree (k + 2). Set ρk+1 := ρ(k+1),∞ and (Mk+1, dk+1) := (M(k+1),∞, d(k+1),∞).
Indu
tively we get the minimal model ρ : (M, d) → (A, dA). �

A minimal model (MM , d) of a 
onne
ted smooth manifold M is a minimal

model for the de Rahm 
omplex (Ω(M), d) of di�erential forms on M . Note that

this implies that (MM , d) is an algebra over R. The last theorem implies that

every 
onne
ted smooth manifold possesses a minimal model whi
h is unique up

to isomorphism of di�erential graded algebras.

For a 
ertain 
lass of spa
es that in
ludes all nilpotent (and hen
e all simply-


onne
ted) spa
es, we 
an read o� the non-torsion part of the homotopy from the

generators of the minimal model. We point the interested reader to Chapter 4.

Ex
ept in Chapter 4, we are from now on just 
onsidering di�erential graded

algebras over the �eld K = R.

For the remainder of this se
tion, we deal with the notion of formality. En-

dowed with the trivial di�erential, the 
ohomology of a minimal DGA is a DGA

itself, and therefore it also possesses a minimal model. In general, these two

minimal models need not to be isomorphi
.
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A minimal di�erential graded algebra (M, d) is 
alled formal if there is a

morphism of di�erential graded algebras

ψ : (M, d) −→ (H∗(M, d), dH = 0)

that indu
es the identity on 
ohomology.

This means that (M, d) and (H∗(M, d), dH = 0) share their minimal model.

The following theorem gives an equivalent 
hara
terisation.

Theorem 1.1.3 ([63, Theorem 1.3.1℄). A minimal model (M, d) is formal if

and only if we 
an write M =
∧
V and the spa
e V de
omposes as a dire
t sum

V = C⊕N with d(C) = 0, d is inje
tive on N , and su
h that every 
losed element

in the ideal I(N) generated by N in

∧
V is exa
t. �

This allows us to give a weaker version of the notion of formality.

De�nition 1.1.4. A minimal model (M, d) is 
alled s-formal, s ∈ N, if we 
an
write M =

∧
V and for ea
h i ≤ s the spa
e V i

generated by generators of

degree i de
omposes as a dire
t sum V i = C i ⊕N i
with d(C i) = 0, d is inje
tive

on N i
and su
h that every 
losed element in the ideal I(

⊕
i≤sN

i) generated by⊕
i≤sN

i
in

∧(⊕
i≤s V

i
)
is exa
t in

∧
V .

Obviously, formality implies s-formality for every s.
The following theorem is an immediate 
onsequen
e of the last de�nition.

Theorem 1.1.5. Let (M, d) be a minimal model, where M =
∧
V , V = C ⊕N

with d(C) = 0 and d is inje
tive on N .

Assume that there exist r, s ∈ N+, n ∈ N r
and x ∈ ∧

(⊕
i≤s V

i
)
su
h that

holds

∀c∈Cr (n + c) x is 
losed and not exa
t.

Then (M, d) is not max{r, s}-formal. �

A 
onne
ted smooth manifold is 
alled formal (resp. s-formal) if its minimal

model is formal (resp. s-formal).

Example ([63, p. 20℄). Any 
ompa
t Riemannian symmetri
 spa
e is formal. �

We end this se
tion with some results that allow an easier dete
tion of for-

mality resp. non-formality. The next theorem shows the reason for de�ning s-
formality: in 
ertain 
ases s-formality is su�
ient for a manifold to be formal.

Theorem 1.1.6 ([27, Theorem 3.1℄). Let M be a 
onne
ted and orientable 
om-

pa
t smooth manifold of dimension 2n or (2n− 1).
Then M is formal if and only if it is (n− 1)-formal. �
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Example ([27, Corollary 3.3℄).

(i) Every 
onne
ted and simply-
onne
ted 
ompa
t smooth manifold is 2-for-
mal.

(ii) Every 
onne
ted and simply-
onne
ted 
ompa
t smooth manifold of dimen-

sion seven or eight is formal if and only if it is 3-formal. �

Proposition 1.1.7 ([27, Lemma 2.11℄). Let M1,M2 be 
onne
ted smooth mani-

folds. They are both formal (resp. s-formal) if and only if M1 ×M2 is formal

(resp. s-formal). �

1.2 Massey produ
ts

An important tool for dete
ting non-formality is the 
on
ept of Massey produ
ts:

As we shall see below, the triviality of the Massey produ
ts is ne
essary for

formality.

Let (A, d) be a di�erential graded algebra.

(i) Let ai ∈ Hpi(A, d), pi > 0, 1 ≤ i ≤ 3, satisfying aj · aj+1 = 0 for j = 1, 2.
Take elements αi of A with ai = [αi] and write αj ·αj+1 = dξj,j+1 for j = 1, 2.
The (triple-)Massey produ
t 〈a1, a2, a3〉 of the 
lasses ai is de�ned as

[α1 · ξ2,3 + (−1)p1+1ξ1,2 · α3] ∈
Hp1+p2+p3−1(A, d)

a1 ·Hp2+p3−1(A, d) +Hp1+p2−1(A, d) · a3
.

(ii) Now, let k ≥ 4 and ai ∈ Hpi(A, d), pi > 0, 1 ≤ i ≤ k, su
h that

〈a1, . . . , ak−1〉 and 〈a2, . . . , ak〉 are de�ned and vanish simultaneously, i.e.

there are elements ξi,j of A, 1 ≤ i ≤ j ≤ k, (i, j) 6= (1, k), su
h that

ai = [ξi,i] and dξi,j =

j−1∑

l=i

ξi,l · ξl+1,j, (1.1)

where ξ = (−1)|ξ|ξ. The Massey produ
t 〈a1, . . . , ak〉 of the 
lasses ai is
de�ned as the set {[∑k−1

l=1 ξ1,l · ξl+1,k] | ξi,j satis�es (1.1)}. This is a subset

of Hp1+...+pk−(k−2)(A, d).

We say that 〈a1, . . . , ak〉 vanishes if 0 ∈ 〈a1, . . . , ak〉.

Remark. The de�nition of the triple-Massey produ
t in (i) as an element of a

quotient spa
e is well de�ned, see e.g. [63, Se
tion 1.6℄.

The next two lemmata show the relation between formality (resp. s-formality)

and Massey produ
ts.
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Lemma 1.2.1 ([63, Theorem 1.6.5℄). For any formal minimal di�erential graded

algebra all Massey produ
ts vanish. �

Lemma 1.2.2 ([27, Lemma 2.9℄). Let (A, d) be an s-formal minimal di�erential
graded algebra. Suppose that there are 
ohomology 
lasses ai ∈ Hpi(A, d), pi > 0,
1 ≤ i ≤ k, su
h that 〈a1, . . . , ak〉 is de�ned. If p1 + . . . + pk−1 ≤ s + k − 2 and

p2 + . . .+ pk ≤ s+ k − 2, then 〈a1, . . . , ak〉 vanishes. �

In [29℄, Fernández and Muñoz introdu
e a di�erent type of Massey produ
t,


alled G-Massey produ
t:

De�nition 1.2.3. Let (A, d) be a DGA and let a, b1, b2, b3 ∈ H2(A, d) satisfying
a · bi = 0 for i = 1, 2, 3. Take 
hoi
es of representatives a = [α], bi = [βi] and
α · βi = dξi for i = 1, 2, 3. Then the G-Massey produ
t 〈a; b1, b2, b3〉 is de�ned as

[ξ1 · ξ2 · β3 + ξ2 · ξ3 · β1 + ξ3 · ξ1 · β2] in
H8(A, d)

〈b1, a, b2〉 ·H3(A, d) + 〈b1, a, b3〉 ·H3(A, d) + 〈b2, a, b3〉 ·H3(A, d)
.

Lemma 1.2.4 ([29, Proposition 3.2℄). If a minimal di�erential graded algebra is

formal, then every G-Massey produ
t vanishes. �

Corollary 1.2.5. If the de Rahm 
omplex (Ω(M), d) of a smooth manifold M
possesses a non-vanishing Massey or G-Massey produ
t, then M is not formal.

If there are 
ohomology 
lasses ai ∈ Hpi(M,R) (pi > 0, 1 ≤ i ≤ k) with

p1 + . . . + pk−1 ≤ s + k − 2 and p2 + . . . + pk ≤ s + k − 2 su
h that 〈a1, . . . , ak〉
does not vanish, then M is not s-formal.

Proof. This holds sin
e a minimal model ρ : (MM , d) → (Ω(M), d) indu
es
an isomorphism on 
ohomology. �

1.3 Geography of non-formal manifolds

Fernández and Muñoz 
onsidered in [28℄ the geography of non-formal 
ompa
t

manifolds. This means they examined whether there are non-formal 
ompa
t

manifolds of a given dimension with a given �rst Betti number. They obtained

the following theorem:

Theorem 1.3.1. Given m ∈ N+ and b ∈ N, there are 
ompa
t oriented m-

dimensional smooth manifolds with b1 = b whi
h are non-formal if and only if

one of the following 
onditions holds:

(i) m ≥ 3 and b ≥ 2,

(ii) m ≥ 5 and b = 1,

(iii) m ≥ 7 and b = 0. �
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A natural question to ask is when there are non-formal 
ompa
t symple
ti
 or


onta
t manifolds as in the last theorem. Parts of this question will be answered

in the next 
hapter.
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Chapter 2

Geography of Non-Formal

Symple
ti
 and Conta
t Manifolds

In this 
hapter we want to 
onstru
t non-formal symple
ti
 and 
onta
t m-

manifolds. If b denotes the �rst Betti number, then the pair (m, b) must satisfy
one of the 
onditions (i), (ii) or (iii) of Theorem 1.3.1. Unfortunately, we shall not

�nd examples for all possible pairs (m, b). But we will be able to prove that the

geography of even-dimensional 
ompa
t manifolds 
oin
ides with that of 
ompa
t

symple
ti
 manifolds.

2.1 Symple
ti
, Kähler and Lefs
hetz manifolds

The main examples of formal spa
es are Kähler manifolds. By de�nition, a Kähler

manifold possesses a Riemannian, a symple
ti
 and a 
omplex stru
ture that are


ompatible in a sense we are going to explain now.

Re
all that a symple
ti
 manifold is a pair (M,ω), where M is a (2n)-dimen-

sional smooth manifold and ω ∈ Ω2(M) is a 
losed 2-form on M su
h that ω is

non-degenerate, i.e. wn
p 6= 0 for all p ∈ M .

De�nition 2.1.1.

(i) An almost 
omplex stru
ture on an even-dimensional smooth manifold M
is a 
omplex stru
ture J on the tangent bundle TM .

(ii) Let M , J be as in (i) and ω ∈ Ω2(M) a non-degenerate 2-form on M. The

2-form ω is 
alled 
ompatible with J if the bilinear form 〈. . . , . . .〉 given by

∀p∈M ∀v,w∈TpM 〈v, w〉 = ω(v, Jw)

de�nes a Riemannian metri
 on M .

9
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(iii) An almost 
omplex stru
ture J on M as in (i) is 
alled integrable if there

exists an atlas AM on M su
h that

∀u∈AM
∀p∈Domain(u) dpu ◦ Jp = J0 ◦ dpu : TpM → R2n,

where

J0 =

(
0 −Id
Id 0

)
.

J is 
alled 
omplex stru
ture for M .

(iv) AKähler manifold is a symple
ti
 manifold (M,ω) with a 
omplex stru
ture

J on M su
h that ω is 
ompatible with J .

If one wants to show that a given almost 
omplex stru
ture is not integrable,

it may be hard to disprove the 
ondition (iii) of the last de�nition. But in [60℄,

Newlander and Nirenberg proved their famous result that an almost 
omplex

stru
ture J on a smooth manifold M is integrable if and only if NJ ≡ 0, where
the Nijenhuis tensor NJ is de�ned as

NJ(X, Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X, Y ]

for all ve
tor �elds X, Y on M .

For a time, it was not 
lear whether every symple
ti
 manifold was not in fa
t

Kählerian. Meanwhile, many examples of non-Kählerian symple
ti
 manifolds are

known. The �rst su
h was given by Thurston in 1976 � the so-
alled Kodaira-

Thurston manifold, see [73℄.

The di�
ulty to prove non-existen
e of any Kähler stru
ture is obvious. Nowa-

days, two easily veri�able ne
essary 
onditions for Kähler manifolds are known.

First, we have the main theorem from the work [16℄ of Deligne, Gri�ths, Morgan

and Sullivan.

Theorem 2.1.2 ([16, p. 270℄). Compa
t Kähler manifolds are formal. �

In order to prove that his manifold is not Kählerian, Thurston used another

method. His manifold has �rst Betti number equal to three and the Hodge

de
omposition for Kähler manifolds implies that its odd degree Betti numbers

have to be even, see e.g. [36, pp. 116 and 117℄. This is even satis�ed for every

Hard Lefs
hetz manifold.

We say that a symple
ti
 manifold (M2n, ω) is Lefs
hetz if the homomorphism

Lk : Hn−k(M,R) −→ Hn+k(M,R)
[α] 7−→ [α ∧ ωk]

is surje
tive for k = n− 1. If Lk
is surje
tive for k ∈ {0, . . . , n− 1}, then (M,ω)

is 
alled Hard Lefs
hetz .
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Note that for 
ompa
t M the surje
tivity of Lk
implies its inje
tivity.

Obviously, the Lefs
hetz property depends on the 
hoi
e of the symple
ti


form. It may be possible that a smooth manifold M possesses two symple
ti


forms ω1, ω2 su
h that (M,ω1) is Lefs
hetz and (M,ω2) not. But as mentioned

above, the existen
e of su
h an ω1 has the following 
onsequen
e that is purely

topologi
al.

Theorem 2.1.3. The odd degree Betti numbers of a Hard Lefs
hetz manifold are

even.

Proof. Let (M2n, ω) be a symple
ti
 manifold satisfying the Lefs
hetz prop-

erty. We us the same idea as in [36, p. 123℄. For ea
h i ∈ {0, . . . , n− 1} one has

a non-degenerated skew-symmetri
 bilinear form

H2i+1(M,R)×H2i+1(M,R) −→ R,
([α], [β]) 7−→ [α ∧ β ∧ ωn−2i−1]

i.e. H2i+1(M,R) must be even-dimensional. �

Obviously, this also proves the next 
orollary.

Corollary 2.1.4. The �rst Betti number of a Lefs
hetz manifold is even. �

Finally, the following shows that the statement of the last theorem holds for

Kähler manifolds:

Theorem 2.1.5 ([36, p. 122℄). Compa
t Kähler manifolds are Hard Lefs
hetz. �

The aim of the next se
tions is to prove the following theorems:

Theorem 2.1.6. For all m ∈ 2N, m ≥ 4 and b ∈ N, b ≥ 2, there are 
ompa
t

m-dimensional symple
ti
 manifolds with b1 = b whi
h are non-formal.

Theorem 2.1.7. For all m ∈ 2N, m ≥ 6, there are 
ompa
t m-dimensional

symple
ti
 manifolds with b1 = 1 whi
h are non-formal.

Theorem 2.1.8. For all m ∈ 2N, m ≥ 8, there are simply-
onne
ted 
ompa
t

m-dimensional symple
ti
 manifolds whi
h are non-formal.

These three theorems and Theorem 1.3.1 imply:

Theorem 2.1.9. Let (m, b) ∈ 2N+×N. If there is a non-formal 
ompa
t oriented
m-dimensional manifold with b1 = b, there is also a symple
ti
 manifold with these
properties. �
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2.2 Donaldson submanifolds

Our examples of non-formal symple
ti
 manifolds will be 
onstru
ted in a similar

way as in the arti
le [27℄ of Fernández and Muñoz. The examples will be Don-

aldson submanifolds of non-formal symple
ti
 manifolds. Therefore, we quote in

this se
tion parts of [27℄.

Note, for the remainder of the 
hapter we denote the de Rham 
ohomology

of a smooth manifold M by H∗(M).
In [20℄ the following is proven: Let (M,ω) be a 2n-dimensional 
ompa
t sym-

ple
ti
 manifold with [ω] ∈ H2(M) admitting a lift to an integral 
ohomology


lass. (Without loss of generality, the latter 
an always be assumed, see [34,

Observation 4.3℄.) Then there exists k0 ∈ N+ su
h that for ea
h k ∈ N+ with

k ≥ k0 there is a symple
ti
 submanifold j : Z →֒ M of dimension 2n− 2 whose

Poin
aré dual satis�es PD[Z] = k[ω]. Moreover, the map j is a homology (n−1)-
equivalen
e in the following sense.

Let f : M1 → M2 be a smooth map between smooth manifolds. f is 
alled

homology s-equivalen
e, s ∈ N, if it indu
es isomorphisms f ∗ : H i(M2) → H i(M1)
on 
ohomology for i ≤ s− 1 and a monomorphism for i = s.

A symple
ti
 submanifold j : Z →֒ M as above is 
alled symple
ti
 divisor or

Donaldson submanifold .

Con
erning minimal models and formality in this 
ontext, we quote the fol-

lowing results. Part (i) resp. (ii) in the theorem 
oin
ides with Proposition 5.1
resp. Theorem 5.2 (i) in [27℄, where a proof is given.

Theorem 2.2.1 ([27℄). Let f : M1 → M2 be a homology s-equivalen
e between


onne
ted smooth manifolds. Denote by ρi : (
∧
Vi, d) → (Ω(Mi), d) the minimal

models of Mi for i = 1, 2.

(i) There exist a morphism F : (
∧
V ≤s
2 , d) → (

∧
V ≤s
1 , d) of di�erential graded

algebras su
h that F : V <s
2 → V <s

1 is an isomorphism, F : V s
2 → V s

1 is a

monomorphism and ρ∗1 ◦ F ∗ = f ∗ ◦ ρ∗2.

(ii) If M2 is (s− 1)-formal, then M1 is (s− 1)-formal. �

Corollary 2.2.2 ([27, Theorem 5.2(ii)℄). Let M be a 2n-dimensional 
ompa
t
symple
ti
 manifold and j : Z →֒ M a Donaldson submanifold.

Then for ea
h s ≤ n− 2, we have: If M is s-formal, then Z is s-formal.
In parti
ular, Z is formal if M is (n− 2)-formal. �

Next, we want to give a 
riterion for a Donaldson submanifold not to be

formal.

Proposition 2.2.3. Let M be a 
ompa
t symple
ti
 manifold of dimension

2n, where n ≥ 3. Using the notation from page 5, we suppose that there are
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ohomology 
lasses ai = [αi] ∈ H1(M), 1 ≤ i ≤ 3, su
h that the (triple-)Massey

produ
t

〈a1, a2, a3〉 = [α1 ∧ ξ2,3 + ξ1,2 ∧ α3] ∈
H2(M)

a1 ∪H1(M) +H1(M) ∪ a3
is de�ned and does not vanish.

Then every Donaldson submanifold of M is not 1-formal.

Proof. Let j : Z →֒ M be a Donaldson submanifold. Sin
e n ≥ 3, j is a

homology 2-equivalen
e. This implies that the (triple-)Massey produ
t

〈j∗a1, j∗a2, j∗a3〉 = [j∗α1 ∧ j∗ξ2,3 + j∗ξ1,2 ∧ j∗α3] ∈
H2(Z)

j∗a1 ∪H1(Z) +H1(Z) ∪ j∗a3
is de�ned and does not vanish. Now, Corollary 1.2.5 implies that Z is not 1-
formal. �

As an immediate 
onsequen
e of the proposition we get:

Corollary 2.2.4. Let Z1, . . . , Zk,M be 
ompa
t symple
ti
 manifolds and assume

that Zi →֒ Zi+1 and Zk →֒ M are Donaldson submanifolds for i = 1, . . . , k − 1.
We suppose that there are 
ohomology 
lasses ai = [αi] ∈ H1(M), 1 ≤ i ≤ 3, su
h
that the (triple-)Massey produ
t

〈a1, a2, a3〉 = [α1 ∧ ξ2,3 + ξ1,2 ∧ α3] ∈
H2(M)

a1 ∪H1(M) +H1(M) ∪ a3
is de�ned and does not vanish.

If dimZ1 ≥ 4, then Z1 is not 1-formal. �

The next lemma will be needed in the proof of Theorem 2.1.7. The proof is

taken word by word from the proof of Formula (5) in [27℄. Note that we denote

the map [ω] ∪ . . . : Hp(M) → Hp+2(M) by [ω] : Hp(M) → Hp+2(M).

Lemma 2.2.5. Let (M,ω) be a 2n-dimensional 
ompa
t symple
ti
 manifold and
j : Z →֒M a Donaldson submanifold.

Then for ea
h p = 2(n− 1)− i, 0 ≤ i ≤ (n− 2), there is a monomorphism

Hp(M)

ker([ω] : Hp(M) → Hp+2(M))
−→ Hp(Z).

Proof. The 
laim 
an be seen via Poin
aré duality. Let 0 ≤ i ≤ (n − 2),
p = 2(n− 1)− i and α ∈ Ωp(M) be 
losed. Then we have

j∗[α] = 0 ⇐⇒ ∀b∈Hi(Z) j
∗[α] ∪ b = 0.
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Sin
e i ≤ (n − 2), we know that there is an isomorphism j∗ : H i(M)
≃→ H i(Z),

thus we 
an assume that for ea
h b ∈ H i(Z) there is a 
losed i-form β onM with

[β|Z ] = j∗[β] = b and get

j∗[α] ∪ j∗[β] =
∫

Z

j∗α ∧ j∗β =

∫

M

α ∧ β ∧ kω,

sin
e [Z] = PD[kω] for k ∈ N+. Therefore, we have

j∗[α] = 0 ⇐⇒ ∀[β]∈Hi(M) [α ∧ ω] ∪ [β] = 0 ⇐⇒ [α ∧ ω] = 0,

from where the lemma follows. �

2.3 Known examples

In this and in the next but one se
tion we make use of some basi
 results on

nilmanifolds. Readers who are not familiar with this notion should read pages 22

up to 24 of Se
tion 3.1 �rst.

2.3.1 The manifolds M(p,q)

The following examples are taken from [13℄.

Let R be a ring with 1. For p ∈ N+ let H(1, p;R) be the set

{




Ip x z
0 1 y
0 0 1


 | x, z ∈ Rp ∧ y ∈ R}.

We write H(1, p) for H(1, p;R). Clearly, this is a nilpotent Lie group and the

2p+ 1 di�erential 1-forms

αi := dxi, β := dy, γi := dzi − xi dy, 1 ≤ i ≤ p,

form a basis of the left-invariant 1-forms. Obviously, we have dαi = dβ = 0 and

dγi = −αi ∧ β.
Further, let q ∈ N+. We set G(p, q) := H(1, p) × H(1, q). Again, this is a

Lie group and analogous as above, we denote the 2p + 2q + 2 forms whi
h form

a basis of the left-invariant 1-forms by

α1, . . . , αp, β, γ1, . . . , γp, α̃1, . . . , α̃q, β̃, γ̃1, . . . , γ̃q.

An easy 
omputation shows that the 2-form

ω :=

p∑

i=1

αi ∧ γi +
q∑

i=1

α̃i ∧ γ̃i + β ∧ β̃
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is a left-invariant symple
ti
 form. Therefore M(p, q) := G(p, q)/Γ(p, q), where
Γ(p, q) := H(1, p;Z) × H(1, q;Z), is a 
ompa
t symple
ti
 nilmanifold of di-

mension 2p + 2q + 2. From Theorem 3.1.5 below we get the minimal model

ρ :
(
MM(p,q), d

)
→
(
Ω(M(p, q)), d

)
as

MM(p,q) =
∧
(a1, . . . , ap, b, c1, . . . , cp, ã1, . . . , ãq, b̃, c̃1, . . . , c̃q),

|ai| = |b| = |ci| = |ãi| = |b̃| = |c̃i| = 1,

dai = db = dãi = db̃ = 0, dci = −aib, dc̃i = −ãib̃,
ρ(ai) = αi, ρ(b) = β, ρ(ci) = γi, ρ(ãi) = α̃i, ρ(b̃) = β̃, ρ(c̃i) = γ̃i.

Therefore, we see b1(M(p, q)) = p+ q + 2.

Proposition 2.3.1 ([13℄). M(p, q) is not formal.

Proof. 〈[β], [αi], [αi]〉 is a non-vanishing Massey produ
t. �

Using Theorem 3.1.5 again, one 
omputes the �rst 
ohomology groups of

M(p, q) as

H0(M(p, q)) = 〈1〉,
H1(M(p, q)) = 〈[αi], [β], [α̃k], [β̃] | 1 ≤ i ≤ p, 1 ≤ k ≤ q〉,
H2(M(p, q)) = 〈[αi ∧ γj], [αi ∧ α̃k], [αi ∧ β̃], [β ∧ γj], [β ∧ α̃l], [β ∧ β̃],

[α̃k ∧ γ̃l], [β̃ ∧ γ̃l] | 1 ≤ i, j ≤ p, 1 ≤ k, l ≤ q〉.

2.3.2 The manifold M8,0

Fernández and Muñoz 
onstru
ted in [29℄ an 8-dimensional non-3-formal 
ompa
t

symple
ti
 manifold (M8,0, ω) with

b0(M8,0) = b8(M8,0) = 1, b1(M8,0) = b7(M8,0) = 0,

b2(M8,0) = b6(M8,0) = 256, b3(M8,0) = b5(M8,0) = 0, b4(M8,0) = 269
(2.1)

as desingularisation of an orbifold. The latter is a Z3-quotient of a nilmanifold.

The non-formality is proved by regarding the G-Massey produ
t 〈[ϑ]; [τ1], [τ2], [τ3]〉
for 
ertain 
losed 2-forms ϑ, τi on M8,0: One has 〈[ϑ]; [τ1], [τ2], [τ3]〉 = λ [ω4] for
λ 6= 0. Clearly, λω4

is not exa
t, and sin
e b3(M8,0) = 0, it follows from De�nition

1.2.3 that this G-Massey produ
t does not vanish.
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2.4 Proofs

Proof of Theorem 2.1.6

Be
ause produ
ts with �nitely many 
opies of S2
give the higher-dimensional

examples, it is enough to prove that for every b ≥ 2 there is a non-formal 
ompa
t

symple
ti
 4-manifold M with b1(M) = b.

Examples for b ∈ {2, 3} were given in [24℄. We shall see them in the proofs of

Theorems 2.5.5 and 3.6.2 below.

Now let b ≥ 4 and 
hoose p, q ∈ N+ su
h that p+ q+2 = b. Then M(p, q) has
dimension 2p + 2q + 2 ≥ 6 and is a non-formal 
ompa
t symple
ti
 nilmanifold

with b1(M(p, q)) = b whi
h satis�es the assumption of Corollary 2.2.4. Therefore,

we get the required non-formal 4-manifold Z with b1(Z) = b1(M(p, q)) = b. �

Proof of Theorem 2.1.7

Sin
e dire
t produ
ts with �nitely many 
opies of S2
gives the higher-dimensional

ones, it is enough to �nd a six-dimensional example. This will be 
onstru
ted in

Theorem 3.8.3.2 below.

But using the ideas from above, one 
an 
onstru
t an eight dimensional ex-

ample as follows:

Gompf has shown in [34℄ that there is a 
ompa
t symple
ti
 4-manifold M4,1

with b1(M4,1) = 1. By Proposition 1.1.7, M12,1 := M8,0 × M4,1 is a 
ompa
t

symple
ti
 12-manifold whi
h is not 3-formal. Clearly, we have b1(M12,1) = 1.
Denote the proje
tions by π : M12,1 → M8,0, p : M12,1 →M4,1 and the symple
ti


forms ofM8,0,M4,1 andM12,1 by ω, σ and Ω = π∗ω+p∗σ. Let ϑ, τi be the 2-forms

of Se
tion 2.3.2. We mentioned 〈[ϑ]; [τ1], [τ2], [τ3]〉 = λ [ω4] 6= 0.
Let j : Z10,1 →֒ M12,1 be a Donaldson submanifold. The 10-form

Ω ∧ λ π∗ω4 = (π∗ω + p∗σ) ∧ λ π∗ω4 = λ p∗σ ∧ π∗ω4

on M12,1 does not represent the zero 
lass in

H10(M12,1)
(2.1)
= (〈[σ2]〉 ⊗H6(M8,0))⊕ (H2(M4,1)⊗H8(M8,0)).

Therefore, we get from Lemma 2.2.5: λ j∗π∗[ω4] ∈ H8(Z10,1)\{0}. From (2.1) we

know H5(M8,0) = 0. Hen
e 〈[j∗π∗τk], [j
∗π∗ϑ], [j∗π∗τl]〉 = 0 for 1 ≤ k, l ≤ 3. So in

the following G-Massey produ
t there is no indetermina
y:

〈[j∗π∗ϑ]; [j∗π∗τ1], [j
∗π∗τ2], [j

∗π∗τ3]〉 = λ j∗π∗[ω4] 6= 0

It follows that Z10,1 is not formal. The fa
t that dimZ10,1 = 10 and b1(Z10,1) = 1
is 
lear by the remarks in Se
tion 2.2.
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Now, let j̃ : Z8,1 →֒ Z10,1 be a Donaldson submanifold. Then the 10-form
j∗Ω ∧ λ j∗π∗ω4

on Z10,1 does not represent the zero 
lass in H10(Z10,1), for we
have

Ω2 ∧ π∗ω4 = (p∗σ + π∗ω) ∧ (p∗σ ∧ π∗ω4) = 2 p∗σ2 ∧ π∗ω4 6= 0,

and by Lemma 2.2.5 we get [j∗(Ω ∧ π∗ω4)] 6= 0.
Again we use Lemma 2.2.5 to see λ j̃∗j∗π∗[ω4] ∈ H8(Z8,1)\{0} and 
an prove

similarly as for Z10,1 that Z8,1 is not formal. Moreover, Z8,1 is 8-dimensional and

has �rst Betti number equal to one. �

Remark. A Donaldson submanifold Z6,1 of the manifold Z8,1 that we have 
on-

stru
ted in the last proof is formal: From the 2-formality of M12,1 =M8,0 ×M4,1

it follows that Z6,1 is 2-formal and therefore formal by Theorem 1.1.6.

Proof of Theorem 2.1.8

M8,0 is the eight dimensional example and the higher-dimensional examples are

obtained by the taking produ
t of M8,0 with �nitely many 
opies of S2
. �

2.5 Conta
t manifolds

We would like to end this 
hapter with a question that arises naturally on
e with

have proved Theorem 2.1.9:

For whi
h pairs (m, b) with m odd 
an we �nd a non-formal 
ompa
t 
onta
t

m-manifold with b1 = b?
Re
all that a 
onta
t manifold is a pair (M, ξ = kerα), where M is a smooth

(2n+1)-manifoldM and α ∈ Ω1(M) a 1-form with αp∧(dα)p
n 6= 0 for all p ∈M .

The hyperplane �eld ξ is 
alled a 
onta
t stru
ture; the 1-form α a 
onta
t form

on M .

Theorem 2.5.1. For ea
h pair (m, b) with m ≥ 3 odd and b ≥ 2 there exists a

non-formal 
ompa
t 
onta
t m-manifold with b1 = b.

The remainder of the 
hapter is devoted to the proof of this theorem.

Our starting point is a non-formal symple
ti
 manifold. Boothby and Wang

proved that there is a 
onta
t manifold whi
h �bres over it with �bre a 
ir
le.

Theorem 2.5.2 ([6, Theorem 3℄). If (M,ω) is a 
ompa
t symple
ti
 manifold

whose symple
ti
 form determines an integral 
ohomology 
lass of M , then the

prin
ipal 
ir
le bundle π : E →M with �rst Chern 
lass c1(π) = [ω] ∈ H2(M,Z)
admits a 
onne
tion 1-form α su
h that π∗ω = dα and α is a 
onta
t form on

E. �

Let E,M be as in the last theorem. Sin
e E is an S1
-bundle over M , one 
an

apply the Gysin sequen
e to obtain b1(E) = b1(M). If dimM ≥ 4, we 
an even

�nd a 
onta
t manifold whi
h has the same fundamental group as M :
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Corollary 2.5.3. Let (M,ω) be a 
ompa
t symple
ti
 manifold of dimension

2n ≥ 4 whose symple
ti
 form determines an integral 
ohomology 
lass.

Then there is a symple
ti
 form ω′
on M#CP n

determining an integer 
oho-

mology 
lass, a 
ompa
t 
onta
t manifold (E, kerα′), and a prin
ipal 
ir
le bundle
π : E → M#CP n

with �rst Chern 
lass c1(π) = [ω′] su
h that the fundamental

groups satisfy π1(E) = π1(M#CP n) = π1(M).

Proof. We use the same argumentation as in the proof of [34, Theorem 4.4℄.

After blowing up a point in M , we 
an obtain a manifold M ′ := M#CP n
with

a symple
ti
 form ω′
su
h that [ω′] = [ω] + εe ∈ H2(M ′) = H2(M) ⊕H2(CP n),

where ε ∈ 1
N+

and e is a generator of H∗(CP n). Without loss of generality,

we 
an assume that ω′
determines an integral 
ohomology 
lass and there is an

embedded sphere S ⊂ M ′ = M#CP n
su
h that

∫
S
ω′ = 1. (Sin
e

∫
S
ω′

depends

on the size of the ball removed from M in the blow-up, we may have to enlarge

ω by an integer s
ale �rst.) Let π : E → M ′
with c1(π) = [ω′] as in Theorem

2.5.2. Then the restri
tion of the �bration π to S is the Hopf �bration, i.e.

π−1(S) = S3
and the middle map in the following part of the homotopy sequen
e

is an isomorphism:

{0} = π2(π
−1(S)) −→ π2(S) −→ π1(S

1) −→ π1(π
−1(S)) = {1}.

π2(S) → π1(S
1) is an isomorphism. From S ⊂M ′

we get in the following part of

the homotopy sequen
e of the �bration π that the �rst map is surje
tive:

π2(M
′) −→ π1(S

1) −→ π1(E) −→ π1(M
′) −→ π0(S

1) = {1}.

This yields an isomorphism π∗ : π1(E) → π1(M
′) = π1(M). �

Under 
ertain 
onditions we 
an show that the 
onta
t manifold that we have

just 
onstru
ted is not formal.

Proposition 2.5.4. Let (M,ω) be a 
ompa
t symple
ti
 manifold of dimension

2n ≥ 4 whose symple
ti
 form determines an integral 
ohomology 
lass. Further,

suppose that there are 
ohomology 
lasses ai ∈ H1(M), 1 ≤ i ≤ 3, su
h that

〈a1, a2, a3〉 is a non-vanishing Massey produ
t in M .

Then the manifold E of Corollary 2.5.3 is not formal.

Proof. Let π : E → M ′ := M#CP n
be as in Corollary 2.5.3 and the non-

vanishing Massey produ
t 〈a1, a2, a3〉 be de�ned by a 2-form α1 · ξ2,3 + ξ1,2 · α3.

(Here we use the notation from page 5.) We show:

π∗ : H1(M ′) −→ H1(E) is an isomorphism, (2.2)

H2(M) ∩ ker
(
π∗ : H2(M ′) → H2(E)

)
= {0}. (2.3)

Then π∗α1 · π∗ξ2,3 + π∗ξ1,2 · π∗α3 de�nes the non-vanishing Massey produ
t
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〈π∗a1, π
∗a2, π

∗a3〉 ∈ π∗(H2(M ′)
)

π∗a1 · π∗
(
H1(M ′)

)
+ π∗

(
H1(M ′)

)
· π∗a3

⊂ H2(E)

π∗a1 ·H1(E) +H1(E) · π∗a3
,

so E is not formal.

[Assume 〈π∗a1, π
∗a2, π

∗a3〉 vanishes. Then for j = 1, 2 there exists a 
lass

[Ξj,j+1] ∈ H1(E) su
h that 0 = dΞj,j+1 = π∗αj ·π∗αj+1. Property (2.2) implies the

existen
e of [ξj,j+1] ∈ H1(M ′) with 0 = dπ∗ξj,j+1 = π∗αj · π∗αj+1 for j = 1, 2, i.e.
αj ·αj+1 is exa
t by (2.3) and 〈[α1], [α2], [α3]〉 vanishes, whi
h is a 
ontradi
tion.℄

It remains to show (2.2) and (2.3): Consider the Gysin sequen
e of π.

{0} −→ H1(M ′)
π∗

−→ H1(E) −→ H0(M ′)
[ω′]∪−→ H2(M ′)

π∗

−→ H2(E) −→ . . . (2.4)

[ω′]∪ : H0(M ′) → H2(M ′) is inje
tive. Therefore, π∗ : H1(M ′) → H1(E) is an
isomorphism, i.e. (2.2) holds.

Further, we get ker
(
π∗ : H2(M ′) → H2(E)

) (2.4)
= R[ω′]. Denote

pr2 : H
2(M ′) = H2(M)⊕H2(CP n) −→ H2(CP n)

the proje
tion onto the se
ond fa
tor. Sin
e ω′
is the symple
ti
 form of the

blow-up of M , we have pr2([ω
′]) 6= 0. But pr2|H2(M) = 0, so (2.3) follows. �

Using the preparations that we have done, we are able to 
onstru
t expli
it

non-formal 
onta
t manifolds.

Theorem 2.5.5. For ea
h n ∈ N with n ≥ 2 and b ∈ {2, 3} there exists a 
ompa
t

onta
t (2n+ 1)-manifold whi
h is not formal.

Proof. In [24℄ the following manifolds are studied. Let Mb, b ∈ {2, 3} be the

four dimensional nilmanifold with basis of left-invariant 1-forms {α, β, γ, η} su
h

that

dα = dβ = 0,

dγ = α ∧ β,

dη =

{
α ∧ γ : b = 2
0 : b = 3

}
.

Then, b1(Mb) = b, the 2-form α ∧ η + β ∧ γ is a symple
ti
 form for Mb, and

〈[β], [β], [α]〉 = −[β ∧ γ] is a non-vanishing Massey produ
t. Again, one 
an

assume that the symple
ti
 form determines an integral 
ohomology 
lass. The


ase n = 2 now follows from Proposition 2.5.4. For n > 2 
onsider the manifolds

Mb × (S2)n−2
instead of Mb. �
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Remark. The manifold M3 in the last proof is the Kodaira-Thurston manifold

that we mentioned at the beginning of this 
hapter.

Theorem 2.5.6. For ea
h b ∈ N with b ≥ 2, there are non-formal 
ompa
t


onta
t manifolds of dimension 3 and 5 with �rst Betti number b1 = b.

Proof. By Theorem 1.3.1, we know that there is a 
ompa
t oriented 3-manifold

M with b1 = b ≥ 2 whi
h is non-formal. By theorems of Martinet [52℄ and Geiges

[33, Proposition 2℄ M and M × S2
admit 
onta
t stru
tures. Further, it follows

from Proposition 1.1.7 that M × S2
is not formal. �

Now, Theorem 2.5.1 follows from Theorems 2.5.5, 2.5.6, Proposition 1.1.7 and

the following result of Bourgeois:

Theorem 2.5.7 ([8℄). Let M be a 
ompa
t 
onta
t manifold of dimension greater

than or equal to three.

Then M × T 2
admits a 
onta
t stru
ture. �



Chapter 3

Solvmanifolds

In this 
hapter we want to study 
ompa
t homogeneous spa
es G/Γ, where G is

a 
onne
ted and simply-
onne
ted Lie group and Γ a dis
rete subgroup in G. It
is well known that the existen
e of su
h a Γ implies the unimodularity of the Lie

group G. Re
all that a Lie group G is 
alled unimodular if for all X ∈ g holds

tr adX = 0, where g denotes the Lie algebra of G.
If we further demand G/Γ to be symple
ti
 (when G is even-dimensional), a

result of Chu [12℄ shows that G has to be solvable.

Therefore, we regard 
ompa
t quotients of 
onne
ted and simply-
onne
ted

solvable Lie groups by dis
rete subgroups, so 
alled solvmanifolds.

First, we re
all the de�nition of nilpotent and solvable groups resp. Lie alge-

bras.

(i) Let G be group and denote its neutral element by e. We de�ne the de-

rived series (D(k)G)k∈N, des
ending series (G(k))k∈N and as
ending series

(G(k))k∈N of subgroups in G indu
tively as follows:

D(0)G := G(0) := G,

D(k)G := [D(k−1)G,D(k−1)G], G(k) := [G,G(k−1)],

G(0) = {e}, G(k) := {g ∈ G | [g,G] ⊂ G(k−1)}.

G is 
alled nilpotent if there exists k0 ∈ N su
h that G(k0) = {e}.
G is 
alled solvable if there exists k0 ∈ N su
h that D(k0)G = {e}.

(ii) Given a Lie algebra g, one de�nes the derived, des
ending and as
ending

series of subalgebras in g via

D(0)g := g(0) := g,

D(k)g := [D(k−1)g, D(k−1)g], g(k) := [g, g(k−1)],

g(0) = {0}, g(k) := {X ∈ g | [X, g] ⊂ g(k−1)}
and 
alls g nilpotent resp. solvable if its as
ending resp. derived series be-


omes trivial for k0 large enough.

21
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We 
olle
t some properties in the following proposition. The parts whi
h are

not obvious 
an be found in [76, Se
tion 3.18℄.

Proposition 3.0.1.

(i) The subgroups arising in the derived, des
ending and as
ending series of

a group are normal. Moreover, they are 
losed and simply-
onne
ted Lie

subgroups in the 
ase of a 
onne
ted and simply-
onne
ted Lie group.

(ii) The subalgebras arising in the derived, des
ending and as
ending series of

a Lie algebra are ideals.

(iii) A Lie group is nilpotent resp. solvable if and only if its Lie algebra is nilpo-

tent resp. solvable. �

3.1 Nilmanifolds

We give a brief review of known results about a spe
ial kind of solvmanifolds,

namely nilmanifolds. For the study non-formal symple
ti
 manifolds, nilmani-

folds form one of the best 
lasses. On the one hand, the non-toral nilmanifolds

introdu
e a geometri
al 
omplexity, while on the other hand their homotopy the-

ory is still amenable to study. In parti
ular, their minimal models are very easy

to 
al
ulate and we shall see that ea
h non-toral nilmanifold is non-formal.

A nilmanifold is a 
ompa
t homogeneous spa
e G/Γ, where G is a 
onne
ted

and simply-
onne
ted nilpotent Lie group and Γ a latti
e in G, i.e. a dis
rete


o-
ompa
t subgroup.

Example. Every latti
e in the abelian Lie group Rn
is isomorphi
 to Zn

. The


orresponding nilmanifold is the n-dimensional torus. �

In 
ontrast to arbitrary solvable Lie groups, there is an easy 
riterion for

nilpotent ones whi
h enables one to de
ide whether there is a latti
e or not.

Re
all that the exponential map exp : g → G of a 
onne
ted and simply-


onne
ted nilpotent Lie group is a di�eomorphism. We denote its inverse by

log : G→ g.

Theorem 3.1.1 ([66, Theorem 2.12℄). A simply-
onne
ted nilpotent Lie group G

admits a latti
e if and only if there exists a basis {X1, . . . , Xn} of the Lie algebra

g of G su
h that the stru
ture 
onstants Ck
ij arising in the bra
kets

[Xi, Xj] =
∑

k

Ck
ij Xk

are rational numbers.

More pre
isely we have:
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(i) Let g have a basis with respe
t to whi
h the stru
ture 
onstants are rational.

Let gQ be the ve
tor spa
e over Q spanned by this basis.

Then, if L is any latti
e of maximal rank in g 
ontained in gQ, the group

generated by exp(L) is a latti
e in G.

(ii) If Γ is a latti
e in G, then the Z-span of log(Γ) is a latti
e L of maximal

rank in the ve
tor spa
e g su
h that the stru
ture 
onstants of g with respe
t

to any basis 
ontained in L belong to Q. �

For a given latti
e Γ in a 
onne
ted and simply-
onne
ted nilpotent Lie group

G, the subset log(Γ) need not to be an additive subgroup of the Lie algebra g.

Example. Consider the nilpotent Lie group G := {




1 x z
0 1 y
0 0 1


 | x, y, z ∈ R}.

Its Lie algebra is g := {




0 x z
0 0 y
0 0 0


 | x, y, z ∈ R}, and the logarithm is given

by

log(




0 x z
0 0 y
0 0 0


) =




1 x z − xy
2

0 1 y
0 0 1


 .

The set of integer matri
es 
ontained in G forms a latti
e Γ in G and

log(Γ) = {




0 a c
0 0 b
0 0 0


 | a, b ∈ Z, (ab ≡ 0(2) ⇒ c ∈ Z), (ab ≡ 1(2) ⇒ c ∈ 1

2
Z)}

is not a subgroup of g.

If Γ is a latti
e su
h that log(Γ) is a subgroup of the Lie algebra, we 
all Γ a

latti
e subgroup.

Note that in the 
ontext of general Lie groups the name �latti
e subgroup�

has a di�erent meaning, namely that G/Γ has a �nite invariant measure. For

nilpotent groups and dis
rete Γ, the latter is the same as to require that Γ is a

latti
e.

Theorem 3.1.2 ([14, Theorem 5.4.2℄). Let Γ be a latti
e in a 
onne
ted and

simply-
onne
ted nilpotent Lie group.

(i) Γ 
ontains a latti
e subgroup of �nite index.

(ii) Γ is 
ontained as a subgroup of �nite index in a latti
e subgroup. �

For later uses, we quote the following two results.
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Proposition 3.1.3 ([14, Lemma 5.1.4 (a)℄). Let G be a lo
ally 
ompa
t group,

H a 
losed normal subgroup and Γ a dis
rete subgroup of G. Moreover, denote

by π : G→ G/H the natural map.

If Γ ∩ H is a latti
e in H, and Γ is a latti
e in G, then π(Γ) is a latti
e in

G/H and ΓH = HΓ is a 
losed subgroup of G. �

Theorem 3.1.4 ([14, p. 208℄). Let G be a 
onne
ted and simply-
onne
ted nilpo-

tent Lie group with latti
e Γ and k ∈ N.
Then Γ∩D(k)G, Γ∩G(k)

resp. Γ∩G(k) are latti
es in D
(k)G, G(k)

resp. G(k).

Note, G(1) is the 
enter Z(G) of G. �

We have seen that it is easy to de
ide if there is a latti
e in a given 
onne
ted

and simply-
onne
ted nilpotent Lie group, i.e. if it indu
es a nilmanifold. More-

over, nilmanifolds have very ni
e properties whi
h will be des
ribed now. Below,

we shall see that these properties are not satis�ed for general solvmanifolds.

Note that we 
an asso
iate a DGA to ea
h Lie algebra g as follows:

Let {X1, . . . , Xn} be a basis of g and denote by {x1, . . . , xn} the dual basis

of g∗. The Chevalley-Eilenberg 
omplex of g is the di�erential graded algebra

(
∧

g∗, δ) with δ given by

δ(xk) = −
∑

i<j

Ck
ij xi ∧ xj ,

where Ck
ij are the stru
ture 
onstants of {X1, . . . , Xn}.

Theorem 3.1.5 ([61℄, [63, Theorem 2.1.3℄). Let G/Γ be a nilmanifold and denote

by Ωl.i.(G) the ve
tor spa
e of left-invariant di�erential forms on G.
Then the natural in
lusion Ωl.i.(G) → Ω(G/Γ) indu
es an isomorphism on


ohomology.

Moreover, the minimal model of G/Γ is isomorphi
 to the Chevalley-Eilenberg


omplex of the Lie algebra of G. �

Corollary 3.1.6. Any nilmanifold satis�es b1 ≥ 2.

Proof. Let g be a nilpotent Lie algebra. By [78, Theorem 7.4.1℄ we have

H1(
∧

g∗, δ) ∼= g/[g, g]. By [18℄ any nilpotent Lie algebra g satis�es the inequality

dim g/[g, g] ≥ 2 whi
h then implies b1(g) ≥ 2. Hen
e the 
laim follows from the

pre
eding theorem. �

We now quote some results that show that it is easy to de
ide whether a

nilmanifold is formal, Kählerian or Hard Lefs
hetz.

Theorem 3.1.7 ([39, Theorem 1℄). A nilmanifold is formal if and only if it is a

torus. �

Theorem 3.1.8 ([63, Theorem 2.2.2℄). If a nilmanifold is Kählerian, then it is

a torus. �
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This theorem follows from Theorem 3.1.7. Another proof was given by Benson

and Gordon in [4℄. In fa
t they proved the following:

Theorem 3.1.9 ([4, pp. 514 et seq.℄). A symple
ti
 non-toral nilmanifold is not

Lefs
hetz. �

Corollary 3.1.10. A symple
ti
 nilmanifold is Hard Lefs
hetz if and only if it

is a torus, independent of the spe
ial 
hoi
e of the symple
ti
 form. �

3.2 Solvmanifolds in general

A solvmanifold is a 
ompa
t homogeneous spa
e G/Γ, where G is a 
onne
ted

and simply-
onne
ted solvable Lie group and Γ a latti
e in G, i.e. a dis
rete


o-
ompa
t subgroup.

Remark. It is important to note that there is a more general notion of solvmani-

fold, namely a 
ompa
t quotient of a 
onne
ted and simply-
onne
ted solvable

Lie group by a (possibly non-dis
rete) 
losed Lie subgroup (see [2℄), but we are

only 
onsidering solvmanifolds as in the last de�nition. Sometimes, su
h are


alled spe
ial solvmanifolds in the literature.

By [63, Theorem 2.3.11℄, a solvmanifold in our sense is ne
essary parallelisable.

E.g. the Klein bottle (whi
h 
an be written as 
ompa
t homogeneous spa
e of a

three-dimensional 
onne
ted and simply-
onne
ted solvable Lie group) is not a

solvmanifold 
overed by our de�nition.

Obviously, every nilmanifold is also a solvmanifold. But most solvmanifolds

are not di�eomorphi
 to nilmanifolds: Every 
onne
ted and simply 
onne
ted

solvable Lie group is di�eomorphi
 to Rm
(see e.g. [76℄), hen
e solvmanifolds are

aspheri
al and their fundamental group is isomorphi
 to the 
onsidered latti
e.

Ea
h latti
e in a nilpotent Lie group must be nilpotent. But in general, latti
es in

solvable Lie group are not nilpotent and therefore the 
orresponding solvmanifolds

are not nilmanifolds.

The fundamental group plays an important role in the study of solvmanifolds.

Theorem 3.2.1 ([66, Theorem 3.6℄). Let Gi/Γi be solvmanifolds for i ∈ {1, 2}
and ϕ : Γ1 → Γ2 an isomorphism.

Then there exists a di�eomorphism Φ: G1 → G2 su
h that

(i) Φ|Γ1
= ϕ,

(ii) ∀γ∈Γ1
∀p∈G1

Φ(pγ) = Φ(p)ϕ(γ). �

Corollary 3.2.2. Two solvmanifolds with isomorphi
 fundamental groups are

di�eomorphi
. �
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The study of solvmanifolds meets with noti
eably greater obsta
les than the

study of nilmanifolds. Even the 
onstru
tion of solvmanifolds is 
onsiderably

more di�
ult than is the 
ase for nilmanifolds. The reason is that there is no

simple 
riterion for the existen
e of a latti
e in a 
onne
ted and simply-
onne
ted

solvable Lie group.

We shall quote some ne
essary 
riteria.

Proposition 3.2.3 ([53, Lemma 6.2℄). If a 
onne
ted and simply-
onne
ted solv-

able Lie group admits a latti
e then it is unimodular. �

Theorem 3.2.4 ([55℄,[63, Theorem 3.1.2℄). Let G/Γ be a solvmanifold that is not

a nilmanifold and denote by N the nilradi
al of G.
Then ΓN := Γ ∩ N is a latti
e in N, ΓN = NΓ is a 
losed subgroup in G

and G/(NΓ) is a torus. Therefore, G/Γ 
an be naturally �bred over a non-trivial

torus with a nilmanifold as �ber:

N/ΓN = (NΓ)/Γ −→ G/Γ −→ G/(NΓ) = T k

This bundle will be 
alled the Mostow bundle. �

Remark.

(i) The stru
ture group a
tion of the Mostow bundle is given by left transla-

tions

NΓ/Γ0 ×NΓ/Γ −→ NΓ/Γ,

where Γ0 is the largest normal subgroup of Γ whi
h is normal in NΓ. (A

proof of the topologi
al version of this fa
t 
an be found in [70, Theorem

I.8.15℄. The proof for the smooth 
ategory is analogous.)

(ii) A non-toral nilmanifold G/Γ �bers over a non-trivial torus with �bre a

nilmanifold, too, sin
e Γ ∩ [G,G] resp. im
(
Γ → G/[G,G]

)
are latti
es in

[G,G] resp. G/[G,G], see above.

In view of Theorem 3.2.4, we are interested in properties of the nilradi
al of a

solvable Lie group. The following proposition was �rst proved in [56℄. Sin
e the

paper is written in Russian and the author of this thesis does not speak Russian,

it is possible that the proof below is the same as in [56℄.

Proposition 3.2.5. Let G be a solvable Lie group and N its nilradi
al.

Then dimN ≥ 1
2
dimG.

Proof. Denote by n ⊂ g the Lie algebras of N ⊂ G and by nC ⊂ gC their


omplexi�
ations. Note that gC is solvable with nilradi
al nC, so from [76, Corol-

lary 3.8.4℄ it follows that nC = {X ∈ gC | ad(X)|[gC,gC] nilpotent}. Therefore, sin
e
ad: gC → Aut([gC, gC]) is a representation of gC in [gC, gC], by Lie's theorem
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(e.g. [76, Theorem 3.7.3℄) there exist λ1, . . . , λk ∈ g∗C su
h that nC =
⋂k

i=1 ker λi,
where k := dimC[gC, gC].

A straightforward 
al
ulation shows dimC

⋂k
i=1 ker λi ≥ dimC gC − k, so we

have proven: dimC nC ≥ dimC gC − dimC[gC, gC].
Be
ause gC is solvable, we get by [76, Corollary 3.8.4℄ that [gC, gC] ⊂ nC and

hen
e dimC nC ≥ dimC gC − dimC nC, i.e.

2 dimC nC ≥ dimC gC.

The proposition now follows from dimR g = dimC gC and dimR n = dimC nC. �

In some 
ases, we will be able to apply the next theorem to the situation of

Theorem 3.2.4. It then gives a su�
ient 
ondition for the Mostow bundle to be

a prin
ipal bundle.

Theorem 3.2.6. Let G be a 
onne
ted and simply-
onne
ted solvable Lie group

and Γ a latti
e in G. Suppose that {e} 6= H & G is a 
losed normal abelian Lie

subgroup of G with H ⊂ N(Γ), the normalizer of Γ. (For example the latter is

satis�ed if H is 
entral.) Assume further that ΓH := Γ ∩H is a latti
e in H.

Then H/ΓH = HΓ/Γ is a torus and

H/ΓH −→ G/Γ −→ G/HΓ (3.1)

is a prin
ipal torus bundle over a solvmanifold.

Proof. By assumption, H is a 
losed normal abelian subgroup of G and ΓH is

a latti
e in H . We have for h1γ1, h2γ2 ∈ HΓ with hi ∈ H , γi ∈ Γ the equivalen
e

(h1γ1)
−1(h2γ2) ∈ Γ ⇐⇒ h−1

1 h2 ∈ ΓH ,

i.e. H/ΓH = HΓ/Γ. Therefore, Proposition 3.1.3 implies that (3.1) is a �bre

bundle whose �bre is 
learly a torus and its base a solvmanifold. The stru
ture

group a
tion is given by the left translations

HΓ/Γ0 ×HΓ/Γ −→ HΓ/Γ,

where Γ0 is the largest normal subgroup of Γ whi
h is normal in HΓ. (This


an be seen analogous as in Remark (i) on page 26.) Sin
e H is 
ontained in

N(Γ) = {g ∈ G | gΓg−1 = Γ}, we have for ea
h h ∈ H and γ, γ0 ∈ Γ

(hγ)γ0(hγ)
−1 = hγγ0γ

−1h−1 ∈ hΓh−1 = Γ,

i.e. Γ = Γ0 and the theorem follows. �

We have seen that the Chevalley-Eilenberg 
omplex asso
iated to a nilmani-

fold is its minimal model. In this respe
t, arbitrary solvmanifolds di�er in an

essential way from nilmanifolds. However, in the spe
ial 
ase of a solvmanifold

whi
h is the quotient of 
ompletely solvable Lie group, one has an a

ess to the

minimal model.
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De�nition 3.2.7. Let G be a Lie group with Lie algebra g.

(i) G and g are 
alled 
ompletely solvable if the linear map adX : g → g has

only real roots

1

for all X ∈ g.

(ii) If G is simply-
onne
ted and exp : g → G is a di�eomorphism, then G is


alled exponential and the inverse of exp is denoted by log : G→ g.

Remark. In the literature a 
onne
ted and simply-
onne
ted Lie group is some-

times 
alled exponential if the exponential map is surje
tive. This is weaker than

our de�nition.

A nilpotent Lie group or algebra is 
ompletely solvable, and it is easy to see

that 
ompletely solvable Lie groups or algebras are solvable. Moreover, the two

propositions below show that simply-
onne
ted 
ompletely solvable Lie groups

are exponential, and exponential Lie groups are solvable. Note that the se
ond

proposition is simply a reformulation of results of Sait� and Dixmier.

Proposition 3.2.8 ([64, Theorem 2.6.3℄). Any exponential Lie group is solv-

able. �

Proposition 3.2.9. A 
onne
ted and simply-
onne
ted solvable Lie group G with

Lie algebra g is exponential if and only if the linear map adX : g → g has no

purely imaginary roots for all X ∈ g.

Proof. Let G be a solvable Lie group. By [67, Théorème II.1℄, adX has

no purely imaginary roots for all X ∈ g if and only if the exponential map is

surje
tive. If this is the 
ase, [67, Théorème I.1℄ implies that the exponential

map is even bije
tive. For solvable Lie groups, the statement �(1

◦
) ⇔ (2

◦
)� of

[19, Théorème 3℄ says that this is equivalent to the exponential map being a

di�eomorphism. �

Let a latti
e in a 
onne
ted and simply-
onne
ted solvable Lie group be given.

Then Theorem 3.2.4 stated that its interse
tion with the nilradi
al is a latti
e in

the nilradi
al. In the 
ase of 
ompletely solvable Lie groups, we have an analogue

for the 
ommutator.

Proposition 3.2.10 ([35, Proposition 1℄). Let G be a 
onne
ted and simply-


onne
ted 
ompletely solvable Lie group and Γ a latti
e in G.
Then [Γ,Γ] is a latti
e in [G,G]. In parti
ular, Γ ∩ [G,G] is a latti
e in

[G,G]. �

We formulate the result that enables us to 
ompute the minimal model of

solvmanifolds whi
h are built by dividing a latti
e out of a 
ompletely solvable

group. The main part of the next theorem is due to Hattori [44℄.

1

By a root of a linear map, we mean a (possibly non-real) root of the 
hara
teristi
 polyno-

mial.
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Theorem 3.2.11. Let G/Γ be a solvmanifold. Denote by (
∧

g∗, δ) the Chevalley-
Eilenberg 
omplex of G and re
all that g∗ is the set of left-invariant di�erential

1-forms on G. Then the following holds:

(i) The natural in
lusion (
∧
g∗, δ) → (Ω(G/Γ), d) indu
es an inje
tion on 
o-

homology.

(ii) If G is 
ompletely solvable, then the in
lusion in (i) is a quasi-isomorphism,

i.e. it indu
es an isomorphism on 
ohomology. Therefore, the minimal

model MG/Γ is isomorphi
 to the minimal model of the Chevalley-Eilenberg


omplex.

(iii) If Ad (Γ) and Ad (G) have the same Zariski 
losures

2

, then the in
lusion

in (i) is a quasi-isomorphism. �

Proof. (i) is [63, Theorem 3.2.10℄ and (iii) is [66, Corollary 7.29℄.

ad (ii): Denote the mentioned in
lusion by i : (
∧
g∗, δ) → (Ω(G/Γ), d). By

Hattori's Theorem (see [63, p. 77℄), this is a quasi-isomorphism. It remains

to show that the minimal model ρ : (MCE, δCE) → (
∧

g∗, δ) of (
∧
g∗, δ) is the

minimal model of (Ω(G/Γ), d). Sin
e the minimal model is unique and the map

i ◦ ρ : (MCE, δCE) → (Ω(G/Γ), d) is a quasi-isomorphism, this is obvious. �

There are examples where the in
lusion in (i) in the last theorem is not a

quasi-isomorphism: Consider the Lie group G whi
h is R3
as a manifold and

whose Lie group stru
ture is given by

(s, a, b) · (t, x, y) = (s+ t, cos(2πt) a− sin(2πt) b+ x, sin(2πt) a+ cos(2πt) b+ y).

G is not 
ompletely solvable and one 
al
ulates for its Lie algebra b1(g) = 1. G

ontains the abelian latti
e Γ := Z3

and G/Γ is the 3-torus whi
h has b1 = 3.

We have seen in the last se
tion that the �rst Betti number of a nilmanifold is

greater than or equal to two. For arbitrary solvmanifolds this is no longer true.

Below, we shall see various examples of solvmanifolds with b1 = 1. The following

orollary shows that b1 = 0 
annot arise.

Corollary 3.2.12. Any solvmanifold satis�es b1 ≥ 1.

Proof. Let g be a solvable Lie algebra. As in the nilpotent 
ase we have

b1(
∧
g∗, δ) = dim g/[g, g], and dim g/[g, g] ≥ 1 by solvability. The 
laim now

follows from Theorem 3.2.11 (i). �

2

A basis for the Zariski topology on GL(m,C) is given by the sets

Up := GL(m,C) \ p−1({0}),

where p : GL(m,C) ∼= C(m2) → C ranges over polynomials.
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To end this se
tion, we shortly dis
uss the existen
e problem for Kähler stru
-

tures on solvmanifolds. The only Kählerian nilmanifolds are tori, but in the gen-

eral 
ontext we have the hyperellipti
 surfa
es, whi
h are non-toral Kählerian

solvmanifolds, see Se
tion 3.6 below. ([63, Theorem 3.4.1℄ states the only Kähle-

rian solvmanifolds in dimension four are tori. This is not 
orre
t, as �rst noted by

Hasegawa in [42℄.) Benson and Gordon [5℄ 
onje
tured in 1990 that the existen
e
of a Kähler stru
ture on a solvmanifold G/Γ with G 
ompletely solvable for
es

G/Γ to be toral and this is true. In fa
t, Hasegawa proved in the �rst half of this

de
ade the following:

Theorem 3.2.13 ([42℄). A solvmanifold G/Γ is Kählerian if and only if it is a

�nite quotient of a 
omplex torus whi
h has a stru
ture of a 
omplex torus bundle

over a 
omplex torus.

If G is 
ompletely solvable, then G/Γ is Kählerian if and only if it is a 
omplex

torus. �

In later se
tions we shall see that neither the Hard Lefs
hetz property nor

formality is su�
ient for an even-dimensional solvmanifold to be Kählerian.

3.3 Semidire
t produ
ts

In later se
tions we shall try to examine low-dimensional solvmanifolds. Con-


erning this, a �rst step is to use the known 
lassi�
ation of the (
onne
ted and

simply-
onne
ted) low-dimensional solvable Lie groups. Most of them have the

stru
ture of semidire
t produ
ts. In order to de�ne this notion, we re
all the


onstru
tion of the Lie group stru
ture of the group of Lie group automorphisms

of a simply-
onne
ted Lie group in the following theorem. It 
olle
ts results that


an be found in [77, pp. 117 et seq.℄.

Theorem 3.3.1.

(i) Let h =
(
|h| = Rh, [. . . , . . .]

)
be an h-dimensional Lie algebra. Then the

set A(h) of Lie algebra isomorphisms of h is a 
losed Lie subgroup of the

automorphism group Aut(|h|) of the h-dimensional ve
tor spa
e |h|. The

Lie algebra of A(h) is

d(h) = {ϕ ∈ End(|h|) |ϕ derivation with respe
t to [. . . , . . .]}.

(ii) Let H be a 
onne
ted and simply-
onne
ted Lie group with neutral element

e and Lie algebra h. The Lie group stru
ture of A(H), the group of Lie

group automorphisms of H, is given by the following group isomorphism:

A(H) −→ A(h) , f 7−→ def.
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Moreover, if H is exponential, its inverse is the map

A(h) −→ A(H) , ϕ 7−→ expH ◦ϕ ◦ logH .

�

For given (Lie) groups G,H and a (smooth) a
tion µ : G×H → H by (Lie)

group automorphisms, one de�nes the semidire
t produ
t of G and H via µ as

the (Lie) group G⋉µH with underlying set (manifold)G×H and group stru
ture

de�ned as follows:

∀(g1,h1),(g2,h2)∈G×H (g1, h1)(g2, h2) =
(
g1g2, µ(g

−1
2 , h1)h2

)

Note that for (g, h) ∈ G⋉µ H we have (g, h)−1 =
(
g−1, µ(g, h−1)

)
.

If the a
tion µ is trivial, i.e. ∀g∈G, h∈H µ(g, h) = h, one obtains the ordinary

dire
t produ
t. In the 
ase of Lie groups G and H , the exponential map expG×H

is known to be the dire
t produ
t of expG
and expH

. If the a
tion is not trivial,

the situation be
omes a little more 
ompli
ated:

Theorem 3.3.2. Let G,H be 
onne
ted Lie groups and µ : G×H → H a smooth

a
tion by Lie group automorphisms. Denote the Lie algebras of G and H by

g and h and let φ := (deGµ1) : g → d(h), where µ1 : G → A(h) is given by

µ1(g) = deHµ(g, . . .) = AdG⋉µH
g .

(i) The Lie algebra of G⋉µ H is g⋉φ h. This Lie algebra is 
alled semidire
t

produ
t of g and h via φ. Its underlying ve
tor spa
e is g×h and the bra
ket

for (X1, Y1), (X2, Y2) ∈ g× h is given by

[(X1, Y1), (X2, Y2)] =
(
[X1, X2]g, [Y1, Y2]h + φ(X1)(Y2)− φ(X2)(Y1)

)
.

In the sequel we shall identify X ≡ (X, 0) and Y ≡ (0, Y ).

(ii) For (X, Y ) ∈ g ⋉φ h one has expG⋉µH((X, Y )) = (expG(X), γ(1)), where
γ : R → H is the solution of

γ̇(t) = (deHRγ(t))
(
expA(h)(−t ad(X)|h)(Y )

)
, γ(0) = eH .

Here Ra denotes the right translation by an element a ∈ H.

Proof. The proof of (i) 
an be found in [76℄. We give a proof of (ii). Given a

Lie group homomorphism f between Lie groups, we denote its di�erential at the

neutral element by f∗.
For (g0, h0), (g, h) ∈ G ⋉µ H we have R(g0,h0)(g, h) = (Rg0(g), Rh0

(µ(g−1
0 , h)),

and this yields for (X, Y ) ∈ g⋉φ h

(R(g0,h0))∗
(
(X, Y )

)
=
(
(Rg0)∗(X), (Rh0

)∗
(
µ1(g

−1
0 )(Y )

))
.
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Sin
e

(
γ1(t), γ2(t)

)
:= expG⋉µH

(
t (X, Y )

)
is the integral 
urve through the iden-

tity of both the right- and left-invariant ve
tor �elds asso
iated to (X, Y ), the
last equation implies that

(
γ1(t), γ2(t)

)
is the solution of the following di�erential

equations:

γ1(0) = eG, γ̇1(t) = (Rγ1(t))∗(X), (3.2)

γ2(0) = eH , γ̇2(t) = (Rγ2(t))∗(µ1(γ1(−t))(Y )). (3.3)

γ1(t) = expG(tX) is the solution of (3.2), and this implies

µ1(γ1(−t)) = Ad
G⋉µH
γ1(−t) |h = expA(h)(−t ad(X)|h),

i.e. (3.3) is equivalent to γ2(0) = eH , γ̇2(t) = (Rγ2(t))∗(exp
A(h)(−t ad(X)|h)(Y )).

So the theorem is proven. �

A 
onne
ted and simply-
onne
ted solvable Lie group G with nilradi
al N is


alled almost nilpotent if it 
an be written as G = R ⋉µ N . Moreover, if N is

abelian, i.e. N = Rn
, then G is 
alled almost abelian.

Let G = R⋉µ N be an almost nilpotent Lie group. Sin
e N has 
odimension

one in G, we 
an 
onsider µ as a one-parameter group R → A(N). By Theorem

3.3.1, there exists ϕ ∈ d(n) with

∀t∈R µ(t) = expN ◦ expAut(|n|)(tϕ) ◦ logN .

Choosing a basis of |n|, we 
an identify Aut(|n|) with a subset of gl(n,R) and get

∀t∈R de

(
µ(t)

)
∈ expGL(n,R)

(
gl(n,R)

)
.

Note, if N is abelian, the exponential map expN : n → N is the identity. These


onsiderations make it interesting to examine the image of expGL(n,R)
.

Theorem 3.3.3 ([62, Theorem 6℄). M is an element of expGL(n,R)(gl(n,R)) if and
only if the real Jordan form ofM 
ontains in the form of pairs the blo
ks belonging

to real negative eigenvalues λ−i , whenever there exist real negative eigenvalues λ
−
i

of M . I.e. the blo
k belonging to su
h a λ−i is of the following form

ni⊕

j=1

(
Jnij

0
0 Jnij

)

with

Jnij
=




λ−i 1 0

λ−i
.

.

.

.

.

. 1
0 λ−i


 ∈ M(nij , nij ;R).

�
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We are now going to derive some fa
ts that follow from the existen
e of a

latti
e in an almost nilpotent Lie group.

Theorem 3.3.4 ([74℄). Let G = R ⋉µ N be an almost nilpotent and 
ompletely

solvable Lie group 
ontaining a latti
e Γ.
Then there is a one-parameter group ν : R → A(N) su
h that ν(k) preserves

the latti
e ΓN := Γ ∩ N for all k ∈ Z. Γ is isomorphi
 to Z ⋉ν ΓN and G/Γ is

di�eomorphi
 to

(
R⋉ν N

)
/
(
Z ⋉ν ΓN

)
.

Moreover, there are t1 ∈ R\{0} and an inner automorphism In1
∈ A(N) su
h

that ν(1) = µ(t1) ◦ In1
.

Proof. We know that ΓN is a latti
e in N and im(Γ → G/N) ∼= Γ/ΓN is a

latti
e in G/N ∼= R. Therefore, Γ/ΓN
∼= Z is free, and by Proposition C.2 the

following exa
t sequen
e is split:

{1} −→ ΓN −→ Γ −→ Z −→ {0},

i.e. there is a group-theoreti
 se
tion s : Z → Γ. [67, Théorème II.5℄ states that a

group homomorphism from a latti
e of 
ompletely solvable Lie group into another


ompletely solvable Lie group uniquely extends to a Lie group homomorphism of

the Lie groups. Hen
e, s extends uniquely to a one-parameter group s : R → G.
Therefore,

ν : R −→ A(N), ν(t)(n) = s(t) · n · s(t)−1,

is a one-parameter group with ∀k∈Z ν(k)(ΓN) = ΓN , the latti
e Γ is isomorphi


to Z⋉ν ΓN by Proposition C.7 and G/Γ is di�eomorphi
 to

(
R⋉νN

)
/
(
Z⋉ν ΓN

)
.

Let γ1 := s(1) ∈ (Γ \ ΓN) ⊂ R ⋉µ N . There are unique t1 ∈ R \ {0}, n1 ∈ N
with γ1 = t1 ·n1, where we identify t1 ≡ (t1, eN) ∈ G and n1 ≡ (0, n1) ∈ G. Sin
e
G = R ⋉ν N and G = R ⋉µ N with the same normal subgroup N of G, one has
for all n ∈ N

ν(1)(n) = γ1 · n · γ−1
1 = t1 · n1 · n · n−1

1 · t−1
1 = µ(t1)(n1 · n · n−1

1 ) = µ(t1)(In1
(n)),

from where the theorem follows. �

Corollary 3.3.5. Let G = R ⋉µ N be an almost nilpotent (not ne
essary 
om-

pletely solvable) Lie group 
ontaining a latti
e Γ. Again, denote by ΓN := Γ ∩N
the indu
ed latti
e in the nilradi
al of G.

Then there exist t1 ∈ R \ {0}, a group homomorphism ν : Z → Aut(ΓN), and
an inner automorphism In1

of N su
h that Γ ∼= Z ⋉ν ΓN and ν(1) = µ(t1) ◦ In1
.

If G is almost abelian, then a basis transformation yields Γ ∼= t1Z ⋉µ|Zn Zn
.

Proof. We argue as in the last proof. But we do not use [67, Théorème 5℄ and

get only a group homomorphism ν : Z → Aut(ΓN) (de�ned on Z instead of R).
For general N , the 
al
ulation at the end of the proof implies the 
laim.
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Sin
e an abelian group has only one inner automorphism, in the almost abelian


ase this yields ν(1) = µ(t1)|ΓN
, so ν 
an be extended to ν : R → A(Rn) via

ν(t) := µ(t · t1). Further, by Corollary 3.2.2, we have ΓN
∼= Zn

. �

Hen
e we have seen, that the existen
e of a latti
e in an almost nilpotent Lie

group implies that a 
ertain Lie group automorphism must preserve a latti
e in

the (nilpotent) nilradi
al. The next theorem deals with su
h automorphisms.

Theorem 3.3.6. Let N be a 
onne
ted and simply-
onne
ted nilpotent Lie group

with Lie algebra n, f∗ ∈ A(n), and f := expN ◦f∗ ◦ logN ∈ A(N), i.e. def = f∗.
Assume that f preserves a latti
e Γ in N .

Then there exists a basis X of n su
h that MX(f∗) ∈ GL(n,Z), where MX(f∗)
denotes the matrix of f∗ with respe
t to X.

Moreover, if there are a one-parameter group µ : R → A(N) and t0 6= 0 su
h

that µ(t0) = f , i.e. de(µ(t0)) = f∗, then det
(
de(µ(. . .))

)
≡ 1.

Proof. By Theorem 3.1.1 (ii),

L := 〈logN(Γ)〉Z = {
m∑

i=1

ki Vi |m ∈ N+, ki ∈ Z, Vi ∈ logN(Γ)}

is a latti
e in n. Therefore, there exists a basis X = {X1, . . . , Xn} of n su
h that

L = 〈X〉Z.
Sin
e f(Γ) ⊂ Γ, we have f∗

(
logN(Γ)

)
⊂ logN (Γ). This implies f∗(L) ⊂ L and

hen
e, MX(f∗) ∈ GL(n,Z).
Further, if µ(t0) = f with µ, t0 6= 0 as in the statement of the theorem,

then the map ∆ := det ◦de(µ(. . .)) : (R,+) → (R \ {0}, ·) is a 
ontinuous group

homomorphism with ∆(0) = 1 and ∆(t0) = ±1, i.e. ∆ ≡ 1. �

Remark. The basis X in the last theorem has rational stru
ture 
onstants.

Obviously, a one-parameter group µ in the automorphism group of an abelian

Lie group with µ(t0) integer valued for t0 6= 0 de�nes a latti
e in R ⋉µ Rn
. It

is easy to 
ompute the �rst Betti number of the 
orresponding solvmanifold, as

the next proposition will show. Before stating it, we mention that the situation

be
omes more 
ompli
ated in the 
ase of a non-abelian and nilpotent group N .

Let a one-parameter group µ : R → A(N) be given and t0 6= 0 su
h that

de(µ(t0)) is an integer matrix with respe
t to a basis X of the Lie algebra n

of N . In general, this does not enable us to de�ne a latti
e in R ⋉µ N . But if

ΓN := expN(〈X〉Z) is a latti
e in N , i.e. ΓN is a latti
e group, then this is possible.

Proposition 3.3.7. Let µ : R → SL(n,R) be a one-parameter group su
h that

µ(1) = (mij)i,j ∈ SL(n,Z).
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Then M := (R⋉µ Rn)/(Z ⋉µ Zn) is a solvmanifold with

π1(M) = 〈e0, e1, . . . , en | ∀i∈{1,...,n} e0eie
−1
0 = em1i

1 · · · emni
n

∀i,j∈{1,...,n} [ei, ej ] = 1 〉

and b1(M) = n+ 1− rank
(
µ(1)− id

)
.

Proof. The statement about the fundamental group is 
lear. Therefore, we

get

H1(M,Z) = 〈e0, e1, . . . , en | ∀i∈{1,...,n} e
m1i

1 · · · emii−1
i · · · emni

n = 1

∀i,j∈{0,...,n} [ei, ej ] = 1 〉

and this group is the abelianisation of

Z⊕ 〈e1, . . . , en | ∀i∈{1,...,n} e
m1i

1 · · · emii−1
i · · · emni

n = 1〉.

Now, the proof of the theorem about �nitely generated abelian groups (see e.g.

[7℄) shows H1(M,Z) = Zn−k+1 ⊕⊕k
i=1 Zdi , where d1, . . . , dk ∈ N+ denote the

elementary divisors of µ(1)− id. The proposition follows. �

We �nally mention a result of Gorbatsevi
h. In view of Theorem 3.2.11 (iii), it

enables us to 
ompute the minimal model of a wide 
lass of solvmanifolds whi
h

are dis
rete quotients of almost abelian Lie groups.

Theorem 3.3.8 ([35, Theorem 4℄). Let µ : R → SL(n,R) be a one-parameter

group su
h that µ(1) = expSL(n,R)(µ̇(0)) ∈ SL(n,Z). Denote by λ1, . . . , λn the

(possibly not pairwise di�erent) roots of µ̇(0). Then Γ := (Z ⋉µ Zn) is a latti
e

in G := (R⋉µ Rn).
The Zariski 
losures of Ad (Γ) and Ad (G) 
oin
ide if and only if the number

πi is not representable as a linear 
ombination of the numbers λk with rational


oe�
ients. �

3.4 Semisimple splittings

In distin
tion from the nilpotent 
ase, 
riteria for the existen
e of a latti
e in


onne
ted and simply-
onne
ted solvable Lie groups have rather 
umbersome

formulations. The 
riterion that we present is due to Auslander [2℄ and makes

use of the 
on
ept of semisimple splitting.

Let G be a 
onne
ted and simply-
onne
ted Lie group. We 
all a 
onne
ted

and simply-
onne
ted solvable Lie group Gs = T ⋉νs Ns a semisimple splitting

for G if the following hold:

(i) Ns is the nilradi
al of Gs � the so 
alled nilshadow of G � and T ∼= Rk
for

k = dimGs − dimNs,
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(ii) T a
ts on Ns via νs by semisimple automorphisms,

(iii) G is a 
losed normal subgroup of Gs and Gs = T ⋉̟ G,

(iv) Ns = ZNs
(T ) · (Ns ∩G), where ZNs

(T ) denotes the 
entralizer of T in Ns.

This de�nition then implies (see e.g. [15, Lemma 5.2℄) that Ns is a 
onne
ted

and simply-
onne
ted nilpotent Lie group, N = Ns ∩G, and G/N ∼= T .

Theorem 3.4.1 ([15, Theorems 5.3 and 5.4℄). Let G be a 
onne
ted and simply-


onne
ted solvable Lie group. Then G admits a unique semisimple splitting.

We shall not give the whole proof of this theorem that 
an be found in [15℄.

But we shortly des
ribe the 
onstru
tion of the semisimple splitting. In order to

do this, we re
all the Jordan de
omposition of 
ertain morphisms:

Let ϕ be an endomorphism of a �nite-dimensional ve
tor spa
e over a �eld of


hara
teristi
 zero. There is a unique Jordan sum de
omposition

ϕ = ϕs + ϕn, ϕs ◦ ϕn = ϕn ◦ ϕs,

with ϕs semisimple and ϕn nilpotent. They are 
alled respe
tively the semisimple

part and the nilpotent part of ϕ. If ϕ is an automorphism, it also has a unique

Jordan produ
t de
omposition

ϕ = ϕs ◦ ϕu, ϕs ◦ ϕu = ϕu ◦ ϕs,

with ϕs semisimple and ϕu unipotent; ϕs is the same as in the sum de
omposition

and ϕu = id + (ϕ−1
s ◦ ϕn). The latter is 
alled the unipotent part of ϕ.

Note, if ϕ is a derivation resp. an automorphism of a Lie algebra, then the

semisimple and the nilpotent resp. unipotent part of ϕ are also derivations resp.

automorphisms of the Lie algebra.

Now, let G be a 
onne
ted and simply-
onne
ted Lie group and f : G→ G a

Lie group automorphism.

Then f∗ := def is a Lie algebra automorphism whi
h has a Jordan produ
t

de
omposition f∗ = (f∗)s ◦ (f∗)u = (f∗)u ◦ (f∗)s. The semisimple and unipotent

part of f are by de�nition the unique Lie group automorphisms fs, fu : G → G
with defs = (f∗)s and defu = (f∗)u.

Constru
tion of the semisimple splitting. Let G be a 
onne
ted and simply-


onne
ted solvable Lie group. Denote by N the nilradi
al of G.
By [15, Proposition 3.3℄, there exists a 
onne
ted and simply-
onne
ted nilpo-

tent Lie subgroup H of G su
h that G = H · N . Fix su
h an H and 
onsider

the well-de�ned (!) a
tion ˜̟ : H → A(G) given by ˜̟ (a)(h · n) := h · (Ia|N)s(n),
where (Ia|N)s is the semisimple part of the automorphism of N whi
h is obtained

by 
onjugating every element of N by a.
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De�ne T := H/(N ∩H) ∼= HN/N ∼= G/N ∼= Rk
. Note that there is an a
tion

̟ of T on G making the following diagram 
ommutative:

H
˜̟ ✲ A(G)

π

❅
❅
❅
❅
❅❘ �

�
�
�
�✒

̟

T = H/(H ∩N)

Set Gs := T ⋉̟ G.
One 
al
ulates that

Ns := {π(h−1) · h | h ∈ H} ·N = {(π(h−1), h · n) | h ∈ H, n ∈ N} ⊂ T ⋉G = Gs

is the nilradi
al of Gs. Furthermore, we have T ·Ns = Gs and T ∩Ns = {e}. For
t ∈ T , h ∈ H , n ∈ N and every ht ∈ π−1({t}) holds

νs(t)
(
π(h−1) · (h · n)

)
:= t · π(h−1) · (h · n) · t−1

= π(h−1) · (h · ˜̟ (ht)(n)),

i.e. νs(t) is a semisimple automorphism and Gs = T ⋉νs Ns.

Remark. As usual, we denote the Lie algebras of the above Lie groups by the


orresponding small German letters. In [21, Chapter III℄ 
an be found:

There exists a ve
tor subspa
e V of |g| with |g| = V ⊕ |n| as ve
tor spa
es
and ∀A,B∈V ad(A)s(B) = 0, where ad(A)s denotes the semisimple part of ad(A).

Let v be a 
opy of V , 
onsidered as abelian Lie algebra. Then the Lie algebra

of the semisimple splitting for G is gs = v⋉ad(...)s g, i.e.

∀(A,X),(B,Y )∈gs [(A,X), (B, Y )] =
(
0, [X, Y ] + ad(A)s(Y )− ad(B)s(X)

)
,

with nilradi
al ns = {(−XV , X) |X ∈ g}, where XV denotes the 
omponent of

X in V .

Now we state the announ
ed 
riterion for the existen
e of latti
es in solvable

Lie groups.

Theorem 3.4.2 ([2, p. 248℄). Let G be a 
onne
ted and simply-
onne
ted solvable

Lie group with nilradi
al N and semisimple splitting Gs = T ⋉νs Ns, where Ns is

the nilshadow of G.
Then G/N is 
ontained as a subgroup in Gs/N = T × (Ns/N) and the pro-

je
tions π1 : G/N → T , π2 : G/N → Ns/N are isomorphisms of abelian Lie

groups.

Moreover, G admits a latti
e if and only if the following 
onditions are satis-

�ed:
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(i) There exists a basis X := {X1, . . . , Xn, . . . , Xm} with rational stru
ture 
on-
stants of the Lie algebra ns of Ns su
h that {X1, . . . , Xn} is a basis of the

Lie algebra n of N .

We write ns(Q) for the rational Lie algebra 〈X〉Q and Ns(Q) for its image
under the exponential map.

(ii) There exists a latti
e subgroup ΓT of T with ΓT ⊂ π1 ◦ π−1
2

(
Ns(Q)/N

)
su
h

that the natural a
tion ΓT → A(ns(Q)) is des
ribed by integer matri
es in

an appropriate basis of ns(Q). �

3.5 Three-dimensional solvmanifolds

The only one- and two-dimensional solvmanifolds are tori. Therefore, we begin

our studies of low-dimensional solvmanifolds in dimension three.

Proposition 3.5.1 ([3℄). Every 3-dimensional 
onne
ted and simply-
onne
ted

solvable non-nilpotent Lie group G that possesses a latti
e Γ has a 2-dimensional
nilradi
al. The Lie group 
an be written as G = R ⋉µ R2

and the latti
e as

Γ = Z ⋉µ Z2
.

Proof. This is a dire
t 
onsequen
e of Proposition 3.2.5 and Corollary 3.3.5. �

Theorem 3.5.2. A three-dimensional solvmanifold G/Γ is non-formal if and

only if b1(G/Γ) = 2. In this 
ase, G/Γ is di�eomorphi
 to a nilmanifold.

Proof. By Theorem 3.1.7, it su�
es to 
onsider the 
ase whenG is solvable and

non-nilpotent. The last proposition implies that there is a map ν : Z → SL(2,Z)
su
h that Γ = Z ⋉ν Z2

.

If none of the roots of ν(1) equals 1, Proposition 3.3.7 implies b1 = 1, so G/Γ
is formal by Theorem 1.3.1.

Assume that ν(1) possesses the double root 1. Then Proposition 3.3.7 implies

b1 = 3 if ν(1) is diagonalisable and b1 = 2 if ν(1) is not diagonalisable.
Case A: ν(1) is diagonalisable

Re
all that a solvmanifold is uniquely determined by its fundamental group.

Therefore, we 
an assume G = R ⋉µ R2
and Γ = Z ⋉µ 〈v1, v2〉Z with linearly

independent v1, v2 ∈ R2
and µ(t) ≡ id. In this 
ase, G/Γ is a torus whi
h is

formal.

Case B: ν(1) is not diagonalisable
In this 
ase, we 
an assume G = R ⋉µ R2

as well as Γ = Z ⋉µ 〈v1, v2〉Z with

linearly independent v1, v2 ∈ R2
and

µ(t) =

(
1 t
0 1

)
.
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The Lie algebra g = 〈T,X, Y | [T, Y ] = X〉 of G is nilpotent, so G/Γ is a nilmani-

fold with b1 = 2. Therefore, it 
annot be a torus and is not formal by Theorem

3.1.7. �

In [3, Chapter III �3℄ the three-dimensional solvmanifolds whi
h have no nil-

manifold stru
ture are examined. This, together with the last theorem, yields a

�
ohomologi
al� 
lassi�
ation of three-dimensional solvmanifolds.

Theorem 3.5.3. Every 3-dimensional solvmanifold G/Γ is 
ontained in Table

3.1 on page 39. In parti
ular, G/Γ is non-formal if and only if it is a non-toral

Table 3.1: 3-dimensional solvmanifolds

b1(G/Γ) G/Γ formal Nilmfd.

3


.s.

4

a) 3 yes Torus yes

b) 2 no yes yes


) 1 yes no yes

d) 1 yes no no

nilmanifold. �

Example. The torus R3/Z3
is a solvmanifold with b1 = 3, and examples of

3-dimensional solvmanifolds with b1 = 2 will be given in the next theorem.

For i ∈ {1, 2} 
onsider the Lie groups Gi = R ⋉µi
R2

, where µi is given by

µ1(t)(x, y) = (et x, e−t y), µ2(t)(x, y) = (cos(t) x+ sin(t) y,− sin(t) x+ cos(t) y).
G1 is 
ompletely solvable and possesses the latti
e

Γ1 := t1 Z ⋉µ1
〈
(

1
1

)
,

(
18+8

√
5

7+3
√
5

2
3+

√
5

)
〉Z,

where t1 = ln(3+
√
5

2
). Note that the following equation implies that Γ1 really is a

latti
e

(
et1 0
0 e−t1

)
=

(
1 18+8

√
5

7+3
√
5

1 2
3+

√
5

)(
0 −1
1 3

)(
1 18+8

√
5

7+3
√
5

1 2
3+

√
5

)−1

. (3.4)

G2 is not 
ompletely solvable and 
ontains the latti
e

Γ2 = πZ ⋉µ2
Z2.

A short 
omputation yields that the abelianisations of Γi have rank one, i.e.

we have 
onstru
ted examples of type 
) and d) in Table 3.1.

3

possesses the stru
ture of a solvmanifold as quotient of a nilpotent Lie group

4

possesses the stru
ture of a solvmanifold as quotient of a 
ompletely solvable Lie group
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Theorem 3.5.4. Every latti
e in the unique 3-dimensional 
onne
ted and simply-

onne
ted non-abelian nilpotent Lie group

U3(R) := {




1 x z
0 1 y
0 0 1


 | x, y, z ∈ R}

is isomorphi
 to Γ3,n := Γ3,n(Z) := {




1 x z
n

0 1 y
0 0 1


 | x, y, z ∈ Z} with n ∈ N+.

Therefore, any three-dimensional nilmanifold with b1 = 2 is of the form

U3(R)/Γ3,n(Z).
Γ3,n(Z) is presented by 〈e1, e2, e3 | [e1, e2] = en3 and e3 
entral 〉.
Proof. U3(R) is the only 
onne
ted and simply-
onne
ted non-abelian nilpo-

tent Lie group of dimension three. By [3, Chapter III � 7℄, ea
h latti
e in it is

isomorphi
 to Γ3,n. The other assertions follow trivially. �

Sometimes, we shall write (x, y, z) for the 
orresponding matrix in U3(R).
For later appli
ations, we are going to determine the Lie group automorphisms

and the one-parameter groups of U3(R). In order to do this, we start with the

following proposition. Note that Z(G) denotes the 
enter of a group G.

Proposition 3.5.5.

(i) [U3(R), U3(R)] = Z(U3(R)) = {(0, 0, z) | z ∈ R}, U3(R)/Z(U3(R)) ∼= R2

(ii) Every Lie group homomorphism f : U3(R) → U3(R) indu
es natural Lie

group homomorphisms

fZ : Z(U3(R)) −→ Z(U3(R))

and

f : U3(R)/Z(U3(R)) −→ U3(R)/Z(U3(R)).

[(x, y, 0)] = [(x, y, z)] 7−→ [f
(
(x, y, z)

)
] = [(f1(x, y, 0), f2(x, y, 0), 0)]

f uniquely determines fZ, and f is an automorphism if and only if f is

su
h.

(iii) Let γ1 = (a1, b1,
c1
n
), γ2 = (a2, b2,

c2
n
) ∈ Γ3,n. Then there is a unique homo-

morphism g : Γ3,n → Γ3,n su
h that g
(
(1, 0, 0)

)
= γ1 and g

(
(0, 1, 0)

)
= γ2.

Moreover, g
(
(0, 0, 1

n
)
)
=
(
0, 0, 1

n
(a1b2 − a2b1)

)
.

One has Γ3,n/Z(Γ3,n) ∼= Z2
, and g is an isomorphism if and only if

g : Γ3,n/Z(Γ3,n) −→ Γ3,n/Z(Γ3,n)

is an isomorphism, i.e. a1b2 − a2b1 = ±1.
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Proof. (i) is trivial.

ad (ii): Let f : U3(R) → U3(R) be a Lie group homomorphism. Then

f
(
(0, 0, z)

)
= [f

(
(z, 0, 0)

)
, f
(
(0, 1, 0)

)
] ∈ Z(U3(R)), (3.5)

i.e. f
(
Z(U3(R))

)
⊂ Z(U3(R)). Moreover, one has for (a, b, c) := f

(
(x, y, 0)

)

(a, b, 0)−1 · (a, b, c) = (−a,−b,−ab) · (a, b, c) = (0, 0,−2ab+ c) ∈ Z(U3(R)),

and therefore [(a, b, 0)] = f([(x, y, 0)]). Now, (3.5) implies that fZ is uniquely

determined by f .
Assume, f is an isomorphism. Then (3.5) also holds for f−1

and we get

f
(
Z(U3(R))

)
= Z(U3(R)), i.e. fZ is an isomorphism of the additive group R.

Sin
e f is 
ontinuous, there existsm ∈ R\{0} su
h that fZ
(
(0, 0, z)

)
= (0, 0, mz).

Denote by (fij)1≤i,j≤2 the matrix of f : R2 → R2
with respe
t to the basis

{
(

1
0

)
,

(
0
1

)
} of the ve
tor spa
e R2

. One 
al
ulates

(0, 0, det(fij)) = [(f11, f21, 0), (f12, f22, 0)] = [f
(
(1, 0, 0)

)
, f
(
(0, 1, 0)

)
]

(3.5)
= (0, 0, m),

so f is an automorphism, sin
e m 6= 0.
Conversely, if f is an automorphism, then the homomorphism fZ is given by

fZ
(
(0, 0, z)

)
= (0, 0, det(f)z) whi
h is even an automorphism. Therefore, the

5-Lemma implies that f is an automorphism.

ad (iii): Let γ1, γ2 be as in (iii). Then [γ1, γ2] =
(
0, 0, 1

n
(a1b2 − a2b1)

)n
and

this implies the existen
e of the (unique) homomorphism g with the mentioned

properties.

If g is an isomorphism, then g(Z(Γ3,n)) = Z(Γ3,n) = {(0, 0, z
n
) | z ∈ Z}, and

therefore |a1b2 − a2b1| = 1. Sin
e the matrix of g has determinant a1b2 − a2b1, f
is an isomorphism.

Again, the 
onverse is trivial. �

Theorem 3.5.6. As a set, the group of Lie group automorphisms A(U3(R))
equals GL(2,R)× R2

, the group law is given by

(A, a) ◦ (B, b) =
(
AB, det(B)B−1a+ det(A)b)

)
, (3.6)

and for f = (A =

(
α β
γ δ

)
,

(
u
v

)
) ∈ A(U3(R)) and (x, y, z) ∈ U3(R) we have

f
(
(x, y, z)

)
=

(
αx+ βy, γx+ δy,

det(A)z + βγxy + αγ
2
x2 + βδ

2
y2 + uy − vx

)
. (3.7)
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Proof. Let f ∈ A(U3(R)) and (x, y, z) ∈ U3(R) be given. We have to show

that there is (

(
α β
γ δ

)
,

(
u
v

)
) ∈ GL(2,R)×R2

su
h that f
(
(x, y, z)

)
satis�es

(3.7). Then a short 
omputation yields (3.6).

Let

(
α β
γ δ

)
∈ GL(2,R) be the matrix of f with respe
t to the 
anoni
al

basis of R2
. We showed in the last proof f

(
(0, 0, z)

)
= (0, 0 det(f)z).

There exist smooth fun
tions f1, f2 : R → R with

f
(
(x, 0, 0)

)
= (αx, γx, f1(x)),

f
(
(0, y, 0)

)
= (βy, δy, f2(y)).

We set u := f
′

2(0) and v := −f ′

1(0). The homomorphism property of f implies

1

h
(f1(x+ h)− f1(x)) =

f1(h)− f1(0)

h
+ αγx,

1

h
(f2(y + h)− f2(y)) =

f2(h)− f2(0)

h
+ βδy,

and this yields

f1(x) = −vx+ αγ

2
x2,

f2(y) = uy +
βδ

2
y2.

Using (x, y, z) = (0, y, 0)(x, 0, 0)(0, 0, z), one 
omputes (3.7). �

Corollary 3.5.7. f = (A,

(
u
v

)
) ∈ A(U3(R)) with A =

(
α β
γ δ

)
lies on a

one-parameter group of A(U3(R)) if and only if A lies one a one-parameter group

of GL(2,R).

If νt =

(
αt βt
γt δt

)
denotes a one-parameter group with ν1 = A, then the map

µt : R → A(U3(R)) de�ned by

µt

(
(x, y, z)

)
=

(
αtx+ βty, γtx+ δty,

(αtδt − βtγt)︸ ︷︷ ︸
= 1

z + βtγtxy +
αtγt
2
x2 + βtδt

2
y2 + tuy − tvx

)

is a one-parameter group with µ1 = f .

Proof. The only 
laim that is not obvious is the fa
t that µt de�nes a one-

parameter group. Using νt+s = νt ◦ νs, this 
an be seen by a short 
al
ulation. �
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3.6 Four-dimensional solvmanifolds

As we have done in the three-dimensional 
ase, we are going to give a �
oho-

mologi
al� 
lassi�
ation of four-dimensional solvmanifolds. We shall 
onsider all

isomorphism 
lasses of latti
es that 
an arise in a four-dimensional 
onne
ted

and simply-
onne
ted solvable Lie group. The next proposition des
ribes su
h

latti
es in the 
ase of a non-nilpotent group.

Proposition 3.6.1. Every 4-dimensional 
onne
ted and simply-
onne
ted solv-

able non-nilpotent Lie group G that possesses a latti
e Γ has a 3-dimensional
nilradi
al N whi
h is either R3

or U3(R). Therefore, G/Γ �bers over S1
(this is

the Mostow bundle) and the Lie group 
an be written as G = R ⋉µ N . If N is

abelian, a basis transformation yields Γ = Z⋉µ|
Z3
Z3
. Otherwise, Γ is isomorphi


to Z ⋉ν Γ3,n, where ν : Z → Aut(Γ3,n) is a group homomorphism with

ν(1)(x, y, z
n
) =

(
a1x+ a2y, b1x+ b2y, a2b1xy + a1b1

x(x−1)
2

+ a2b2
y(y−1)

2

+ 1
n
(c1x+ c2y + (a1b2 − a2b1)z)

)
,

where c1, c2,∈ Z, and

(
a1 a2
b1 b2

)
∈ GL(2,Z) is the matrix of ν(1) with respe
t to

the 
anoni
al basis of the Z-module Z2 = Γ3,n/Z(Γ3,n). Moreover, ν(1) lies on a

one-parameter group R → A(U3(R)/Z(U3(R))) = GL(2,R), i.e. ν(1) ∈ SL(2,R).

Proof. From [63, Theorem 3.1.10℄ follows dimN = 3 and G = R ⋉µ N . If N
is abelian, Corollary 3.3.5 implies that we 
an assume Γ = Z ⋉µ|

Z3
Z3

.

Assume now that N is not abelian, i.e. N = U3(R). ΓN = Γ ∩ N is a

latti
e in N and by Theorem 3.5.4, we have ΓN = Γ3,n. By Corollary 3.3.5,

there is a homomorphism ν : Z → Aut(Γ3,n) with Γ ∼= Z ⋉ν Γ3,n. Proposition

3.5.5(iii) implies that ν(1) is determined by (a1, b1,
c1
n
) := ν(1)

(
(1, 0, 0)

)
and

(a2, b2,
c2
n
) := ν(1)

(
(0, 1, 0)

)
∈ Γ3,n. Sin
e (x, y, z

n
) = (0, 1, 0)y(1, 0, 0)x(0, 0, 1

n
)z, a

short 
omputation yields the 
laimed formula for ν(1)
(
(x, y, z

n
)
)
.

Further, Corollary 3.5.7 implies that ν(1) lies on a one-parameter group. �

Theorem 3.6.2. Every 4-dimensional solvmanifold G/Γ is 
ontained in Table

3.2. In parti
ular, G/Γ is non-formal if and only if it is a non-toral nilmanifold.

Proof. Apart from the 
olumn on formality the theorem follows from works

of Geiges [31℄ and Hasegawa [40℄. (Attention: In [40℄ a more general notion of

solvmanifold is used!)

A de
omposable four-dimensional 
onne
ted and simply-
onne
ted nilpotent

Lie group is abelian or has a two-dimensional 
enter. The only 
onne
ted and

simply-
onne
ted inde
omposable nilpotent Lie group of dimension four has a

two-dimensional 
ommutator. By Propositions 3.1.4 and 3.1.3, the 
orrespond-

ing nilmanifolds have the stru
ture of orientable T 2
-bundles over T 2

. (The ori-

entability follows from the total spa
es' orientability.)
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Table 3.2: 4-dimensional solvmanifolds

b1(G/Γ) G/Γ formal symple
ti
 
omplex Kähler Nilmfd.

5


.s.

6

a) 4 yes yes Torus yes Torus yes

b) 3 no yes PKS

7

no yes yes


) 2 yes yes no no no yes

d) 2 yes yes HS

8

yes no no

e) 2 no yes no no yes yes

f) 1 yes no no no no yes

g) 1 yes no IS0 9

no no no

h) 1 yes no IS+ 10

no no yes

i) 1 yes no SKS

11

no no no

From a result of Geiges [31, Theorems 1 and 3℄ follows that they are 
ontained

in Table 3.2. (Re
all that a nilmanifold is formal if and only if it is a torus.) In

parti
ular, every four-dimensional nilmanifold is symple
ti
.

Now, we regard a latti
e Γ = Z ⋉ν ΓN , ΓN ∈ {Z3,Γ3,n(Z)}, in a Lie group

G = R⋉µ N as in the last proposition.

We expand Hasegawa's argumentation in [40℄ by the aspe
t of formality and


onsider the �roots� of ν(1). Re
all, Corollary 3.2.2 implies that a solvmanifold is

determined by its fundamental group. Below, we shall use this fa
t several times.

Case A.: ΓN = Z3

By Proposition 3.6.1, ν extends to a one-parameter group R → SL(3,R). Denote
by λ1, λ2, λ3 ∈ C the roots of ν(1) ∈ SL(3,Z), i.e. λ1 · λ2 · λ3 = 1. We get from

Theorem 3.3.3 and Lemma B.4 that the following sub
ases 
an o

ur:

A.1.) λ1, λ2, λ3 ∈ R+

A.1.1.) ∃i0 λi0 = 1 (w.l.o.g. λ1 = 1)

A.1.1.1.) λ2 = λ3 = 1

A.1.1.2.) λ2 = λ−1
3 ∈ R \ {1}

A.1.2.) ∀i λi 6= 1

A.1.2.1.) ν(1) is diagonalisable

A.1.2.2.) ν(1) is not diagonalisable

5

possesses the stru
ture of a solvmanifold as quotient of a nilpotent Lie group

6

possesses the stru
ture of a solvmanifold as quotient of a 
ompletely solvable Lie group

7

PrimaryKodaira Surfa
e

8

Hyperellipti
 Surfa
e

9

Inoue Surfa
e of Type S
0

10

Inoue Surfa
e of Type S
+

11

Se
ondary Kodaira Surfa
e
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A.2.) λ1 = 1, λ2 = λ3 = −1 and ν(1) is diagonalisable

A.3.) ∃i0 λi0 ∈ C \ R (w.l.o.g. λ2 = λ3 ∈ C \ R and λ1 ∈ R+)

A.3.1.) λ1 = 1

A.3.2.) λ1 6= 1

Case A.1.1.1.: λ1 = λ2 = λ3 = 1
If ν(1) is diagonalisable, then G/Γ is 
learly a torus. This is 
ase a). If ν(1) is
not diagonalisable we 
an assume G = R⋉µ R3

and Γ = Z⋉µ 〈v1, v2, v3〉Z, where
µ(t) is one of the following one-parameter groups

exp(t




0 0 0
0 0 1
0 0 0


) =




1 0 0
0 1 t
0 0 1


 ,

exp(t




0 1 −1
2

0 0 1
0 0 0


) =




1 t 1
2
(t2 − t)

0 1 t
0 0 1


 .

In both 
ases G/Γ is a 4-dimensional nilmanifold and therefore symple
ti
. In

the �rst 
ase, we have a primary Kodaira surfa
e with b1 = 3, see [40, Se
tion

2.2.3)℄; in the se
ond 
ase the nilmanifold has b1 = 2 and no 
omplex stru
ture,

see [41, Example 2℄. Being non-toral nilmanifolds, both are not formal and we

get the 
ases b) and e).

Cases A.1.1.2. and A.1.2.1.: The λi are positive and pairwise di�erent or

two of them are equal but ν(1) is diagonalisable. (The latter 
annot happen by

Lemma B.4.)

We 
an assume G = R⋉µR3
and Γ = Z⋉µ 〈v1, v2, v3〉Z with linearly independent

v1, v2, v3 ∈ R3, where µ(t) =




exp(t ln(λ1)) 0 0
0 exp(t ln(λ2)) 0
0 0 exp(t ln(λ3))


 . By

[41, Example 2℄, the solvmanifold G/Γ does not admit a 
omplex stru
ture.

One 
omputes the Lie algebra of G as

g = 〈 T,X, Y, Z | [T,X ] = ln(λ1)X, [T, Y ] = ln(λ2)Y, [T, Z] = ln(λ3)Z 〉

whi
h is 
ompletely solvable and non-nilpotent. Therefore, the minimal model of

the Chevalley-Eilenberg 
omplex is the minimal model of G/Γ.
If none of the roots λi is one, we see by Proposition 3.3.7 that b1(G/Γ) = 1.

Sin
e G/Γ is parallelisable, this implies b2(G/Γ) = 0, so the spa
e 
annot be

symple
ti
. Further it is formal by Theorem 1.3.1. This is 
ase f) in Table 3.2.

If one of the roots is one (w.l.o.g. λ1 = 1), we have b1(G/Γ) = 2 and the

Chevalley-Eilenberg 
omplex is

(∧
(τ, α, β, γ) , dτ = dα = 0, dβ = − ln(λ2) τ ∧ β, dγ = − ln(λ3) τ ∧ γ

)
.
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τ ∧ α + α ∧ β + α ∧ γ − β ∧ γ de�nes a symple
ti
 form on G/Γ. Further, one


omputes the �rst stage of the minimal model of the Chevalley-Eilenberg 
omplex

as

M≤1 =
∧

(x1, x2), dxi = 0.

Therefore, G/Γ is 1-formal and by Theorem 1.1.6 formal. This is 
ase 
) in Table

3.2.

Case A.1.2.2.: λi ∈ R+ \ {1} and ν(1) is not diagonalisable
In this 
ase two roots must be equal (w.l.o.g. λ2 = λ3) and the third is di�erent

from the others, i.e. λ1 = 1
λ2
2

6= λ2. Sin
e the 
hara
teristi
 polynomial of ν(1)

has integer 
oe�
ients, Lemma B.4 implies λ2 = ±1 and this is a 
ontradi
tion.

Cases A.2. and A.3.1.: λ1 = 1, λ2 = λ3 = exp(iϕ) ∈ C \ R, ϕ ∈]0, 2π[
We 
an assume G = R⋉µR3

and Γ = Z⋉µ 〈v1, v2, v3〉Z with linearly independent

v1, v2, v3 ∈ R3, where µ(t) =




1 0 0
0 cos(tϕ) − sin(tϕ)
0 sin(tϕ) cos(tϕ)


 . Thus G/Γ is a hyper-

ellipti
 surfa
e (see [40, Se
tion 3.3.℄) whi
h is Kählerian and has b1 = 2. The

Lie algebra of G is not 
ompletely solvable and we are in 
ase d).

Case A.3.2.: λ1 6= 1, λ2 = λ3 = |λ2| exp(iϕ) ∈ C \ R, ϕ ∈]0, 2π[\{π}
We 
an assume G = R⋉µR3

and Γ = Z⋉µ 〈v1, v2, v3〉Z with linearly independent

v1, v2, v3 ∈ R3
, where µ(t) =




λt1 0 0
0 |λ2|t cos(tϕ) −|λ2|t sin(tϕ)
0 |λ2|t sin(tϕ) |λ2|t cos(tϕ)


 . Thus G/Γ is

a Inoue surfa
e of type S0
(see [40, Se
tion 3.6.℄), whi
h is not symple
ti
 and

has b1 = 1 (by Proposition 3.3.7, sin
e 1 is no root of µ(1)). By Theorem 1.3.1,

G/Γ is formal. The Lie algebra of G is not 
ompletely solvable and this yields


ase g) of Table 3.2.

Case B.: ΓN = Γ3,n(Z)
In this 
ase we have a homomorphism ν : Z → Aut(Γ3,n(Z)). We shall write N
for U3(R) and ΓN for Γ3,n(Z). The automorphism ν(1) indu
es an automorphism

ν(1) of ΓN/Z(ΓN) = Z2
whi
h lies by Proposition 3.6.1 on a one-parameter group

R → A(U3(R)/ΓN) = GL(2,R). Denote the roots of ν(1) ∈ GL(2,Z) by λ̃1, λ̃2.
Theorem 3.3.3 shows that the following 
ases are possible:

B.1.) λ̃1, λ̃2 ∈ R+

B.1.1.) λ̃1 = λ̃2 = 1

B.1.2.) λ̃1 = λ̃−1
2 6= 1

B.2.) λ̃1 = λ̃2 = −1 and ν(1) is diagonalisable

B.3.) λ̃1 = λ̃2 ∈ C \ R
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ν(1) also indu
es an automorphism ν(1)Z of the 
enter Z(ΓN) of ΓN whi
h equals

det
(
ν(1)

)
· id = id by Proposition 3.5.5(iii).

Case B.1.1.: λ̃1 = λ̃2 = 1

By [30, Lemma 1℄, we 
an assume ν(1) =

(
1 k
0 1

)
∈ SL(2,Z) with k ∈ N. Then

Proposition 3.6.1 yields ν(1)
(
(x, y, z

n
)
)
= (x+ ky, y, k y(y−1)

2
+ c1x+c2y+z

n
) and this

implies

Γ = Z ⋉ν Γ3,n

= 〈e0, . . . , e3 | [e0, e1] = ec13 , [e
−1
2 , e0] = ek1e

c2
3 , [e0, e3] = 1, [e1, e2] = en3 〉.

This is a dis
rete torsion-free nilpotent group, whi
h 
an be embedded as a latti
e

in a 
onne
ted and simply-
onne
ted nilpotent Lie group by [66, Theorem 2.18℄.

Sin
e a solvmanifold is uniquely determined by its fundamental group, G/Γ is

di�eomorphi
 to a nilmanifold.

As at the beginning of the proof, we 
on
lude that G/Γ is the total spa
e of a

T 2
-bundle over T 2

and o

urs in our list. The quotient G/Γ is of type b) if k = 0
and of type e) if k 6= 0.

Case B.1.2.: λ̃1 = λ̃−1
2 ∈ R+ \ {1}

We have ν(1) =

(
a1 a2
b1 b2

)
∈ SL(2,Z), and Proposition 3.6.1 implies

ν(1)(x, y, z
n
) =

(
a1x+ a2y, b1x+ b2y, a2b1xy + a1b1

x(x−1)
2

+ a2b2
y(y−1)

2

+ 1
n
(c1x+ c2y + (a1b2 − a2b1)z)

)

for 
ertain c1, c2 ∈ Z.

Choose eigenve
tors

(
v1
v2

)
,

(
w1

w2

)
∈ R2 \{0} with respe
t to the eigenval-

ues λ̃1 resp. λ̃2 of
τν(1) (where τ

denotes the transpose). There exist u1, u2, u3 ∈ R
su
h that for γi := (vi, wi, ui), i ∈ {1, 2}, and γ3 := (0, 0, u3) ∈ U3(R) we have

[γ1, γ2] = γn3 ,

µ̃(1)(γ1) = γa11 γ
b1
2 γ

c1
3 , µ̃(1)(γ2) = γa21 γ

b2
2 γ

c2
3 ,

where µ̃(t)
(
(x, y, z)

)
=
(
exp(t ln(λ̃1)) x, exp(t ln(λ̃2)) y, z

)
.

Then G/Γ is di�eomorphi
 to the solvmanifold G̃/Γ̃, where G̃ = R⋉µ̃ U3(R)
and Γ̃ = Z ⋉µ̃ 〈γ1, γ2, γ3〉, i.e. G/Γ is a Inoue surfa
e of type S+

, see [40, Se
tion

3.7℄. The Lie algebra of G̃,

g̃ = 〈 T,X, Y, Z | [T,X ] = X, [T, Y ] = −Y, [X, Y ] = Z 〉,

is 
ompletely solvable and not nilpotent. Further, the knowledge of g̃ implies

b1(G/Γ) = 1. By Theorem 1.3.1, G/Γ is formal. Therefore, this is a solvmanifold

of type h) in Table 3.2.
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Case B.2.: λ̃1 = λ̃2 = −1 and ν(1) is diagonalisable

[30, Lemma 1℄ implies that we 
an assume ν(1) =

(
−1 0
0 −1

)
∈ SL(2,Z). So

Proposition 3.6.1 implies ν(1)
(
(x, y, z

n
)
)
= (−x,−y, c1x+c2y+z

n
) for 
ertain integers

c1, c2 ∈ Z. Moreover, G/Γ is di�eomorphi
 to G̃/Γ̃, where G̃ := R⋉µ̃ U3(R),

µ̃(t)
(
(x, y, z)

)
=
(
cos(tπ) x− sin(tπ) y, sin(tπ) x+ cos(tπ) y, z + ht(x, y)

)
,

ht(x, y) = 1
2
sin(tπ)

(
cos(tπ)

(
x2 − y2

)
− 2 sin(tπ)xy

)
and Γ̃ = Z ⋉µ̃ 〈γ1, γ2, γ3〉

su
h that [γ1, γ2] = γn3 , µ̃(1)(γ1) = γ−1
1 γc13 and µ̃(1)(γ2) = γ−1

2 γc23 . (Using the

addition theorems for sin and cos, one 
al
ulates that µ̃ is a one-parameter group

in A(U3(R)).) By [40, Se
tion 3.5℄, G̃/Γ̃ is a se
ondary Kodaira surfa
e.

Obviously, the Lie algebra of G̃ is not 
ompletely solvable and we 
annot use

its Chevalley-Eilenberg 
omplex for 
omputing b1(G/Γ). But sin
e

Γ = 〈e0, . . . , e3 | e0e1e−1
0 = e−1

1 ec13 , e0e2e
−1
0 = e−1

2 ec13 , [e0, e3] = 1, [e1, e2] = en3 〉,

we see b1(G/Γ) = rankΓab = 1 and G/Γ belongs to the last row in Table 3.2.

Case B.3.: λ̃1 = λ̃2 = exp(iϕ) ∈ C \ R, ϕ ∈]0, 2π[\{π}
This 
ase is similar to the last one. We have |tr ν(1)| ≤ |λ̃1| + |λ̃2| = 2 and [30,

Lemma 1℄ implies that we 
an assume ν(1) to be

(
0 −1
1 0

)
or ±

(
0 −1
1 1

)
.

In ea
h 
ase, one 
omputes b1(G/Γ) = rankΓab = 1, as above. Moreover, one

embeds a latti
e Γ̃ isomorphi
 to Γ in the Lie group G̃ := R⋉µ̃ U3(R), where

µ̃(t)
(
(x, y, z)

)
=
(
cos(tϕ) x− sin(tϕ) y, sin(tϕ) x+ cos(tϕ) y, z + ht(x, y)

)
,

ht(x, y) =
1
2
sin(tϕ)

(
cos(tϕ)

(
x2 − y2

)
− 2 sin(tϕ)xy

)
. Again, G̃/Γ̃ is a se
ondary

Kodaira surfa
e and G/Γ is an example for 
ase i). For more details see [40,

Se
tion 3.5℄. �

Below, we give examples for ea
h of the nine types of four-dimensional solv-

manifolds. The Lie algebras of the 
onne
ted and simply-
onne
ted four-dimen-

sional solvable Lie groups that admit latti
es are listed in Table A.1 in Appendix

A.

Example. The following manifolds belong to the 
orresponding row in Table 3.2.

a) R4/Z4

b) (R⋉µb
R3)/(Z ⋉µb

Z3), µb(t) =




1 0 0
0 1 t
0 0 1



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) (R⋉µc
R3)/Γc with

Γc = Z ⋉µc
〈




1
0
0


 ,




0
1
1


 ,




0
18+8

√
5

7+3
√
5

2
3+

√
5


〉Z,

t1 = ln(3+
√
5

2
) and µc(t) =




1 0 0
0 et t1 0
0 0 e−t t1


 ; the proof that this is really

a solvmanifold is analogous to that in the example on page 39.

d) (R⋉µd
R3)/(πZ ⋉µd

Z3), µd(t) =




1 0 0
0 cos(t) − sin(t)
0 sin(t) cos(t)




e) (R⋉µe
R3)/(Z ⋉µe

Z3), µe(t) =




1 t 1
2
(t2 − t)

0 1 t
0 0 1




f) Consider A :=




0 0 1
1 0 −11
0 1 8


 ∈ SL(3,Z). A has X3 − 8X2 + 11X − 1 as


hara
teristi
 polynomial whi
h possesses three pairwise di�erent real roots

t1 ≈ 6, 271, t2 ≈ 1, 631 and t3 ≈ 0, 098. Therefore, A is 
onjugate to µf(1),

where µf(t) =




et ln(t1) 0 0
0 et ln(t2) 0
0 0 et ln(t3)



, and this implies the existen
e

of a latti
e Γf in the 
ompletely solvable Lie group R⋉µf
R3

.

g) Let A :=




0 0 1
1 0 −8
0 1 4


 ∈ SL(3,Z). The 
hara
teristi
 polynomial of A is

X3− 4X2+8X − 1 whi
h has three pairwise di�erent roots t1 ≈ 0, 134 and
t2,3 = (1/

√
t1) (cos(ϕ) ± i sin(ϕ)) ≈ 1, 933 ± 1, 935 i. So A is 
onjugate to

µg(1), where µg(t) =




et ln(t1) 0 0
0 et ln(|t2|) cos(t ϕ) −et ln(|t2|) sin(t ϕ)
0 et ln(|t2|) sin(t ϕ) et ln(|t2|) cos(t ϕ)



, and

this implies the existen
e of a latti
e Γg in the Lie group R⋉µg
R3

.

h) Using Theorem 3.1.1, one shows that

γ1 := (1, 1,−1 +
√
5

3 +
√
5
),

γ2 := (−2(2 +
√
5)

3 +
√
5
,
1 +

√
5

3 +
√
5
,−11 + 5

√
5

7 + 3
√
5
),
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γ3 := (0, 0,
√
5)

generate a latti
e Γ in U3(R) with [γ1, γ2] = γ3 and γ3 
entral.

De�ne the one-parameter group µh : R → A(U3(R)) by

µh(t)
(
(x, y, z)

)
= (e−t t1x, et t1y, z),

where t1 := ln(3+
√
5

2
). Then µh(1) preserves the latti
e Γ with

µh(1)(γ1) = γ21 γ2, µh(1)(γ2) = γ1 γ2, µh(1)(γ3) = γ3

and therefore, Z ⋉µh
Γ is a latti
e in R⋉µh

U3(R).

i) Consider the Lie group G̃ and the one-parameter group µ̃ of Case B.2 from

the proof of the last theorem. Setting γ1 = (1, 0, 0), γ2 = (0, 1, 0) as well
as γ3 = (0, 0, 1), n = 1 and c1 = c2 = 0, one expli
itly gets an example.

The manifolds of type 
) show that formal spa
es with the same minimal

model as a Kähler manifold need not be Kählerian. This was proved by Fernández

and Gray.

Theorem 3.6.3 ([25℄). Let M be one of the symple
ti
 solvmanifolds of type 
)

in the last theorem, i.e. M is formal and possesses no 
omplex stru
ture. M has

the same minimal model as the Kähler manifold T 2 × S2
. �

3.7 Five-dimensional solvmanifolds

We study the �ve-dimensional solvmanifolds by regarding latti
es in the 
orre-

sponding 
onne
ted and simply-
onne
ted Lie groups. By Proposition 3.2.3, their

Lie algebras have to be unimodular. These are listed in Appendix A.

3.7.1 Nilpotent and de
omposable solvable Lie algebras

There are nine 
lasses of nilpotent Lie algebras in dimension �ve, see Table A.2.

Ea
h of them has a basis with rational stru
ture 
onstants. By Theorem 3.1.1,

the 
orresponding 
onne
ted and simply-
onne
ted Lie groups admit latti
es and

a

ordingly to Theorem 3.1.7, the asso
iated nilmanifolds are formal if and only if

they are tori. For i ∈ {4, 5, 6} the 
onne
ted and simply-
onne
ted nilpotent Lie

group with Lie algebra g5.i possesses the left-invariant 
onta
t form x1 (where x1
is dual to the basis elementX1 ∈ gi as in Table A.2). Therefore, the 
orresponding

nilmanifolds are 
onta
t.

The eight 
lasses of de
omposable unimodular non-nilpotent solvable Lie al-

gebras are listed in Table A.3. Ex
ept for g4.2 ⊕ g1, the 
orresponding 
onne
ted

and simply-
onne
ted Lie groups admit latti
es sin
e both of their fa
tors admit

latti
es.
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Theorem 3.7.1.1. The 
onne
ted and simply-
onne
ted Lie group G4.2×R with

Lie algebra g4.2 ⊕ g1 possesses no latti
e.

Proof. Write G for G4.2 × R and

g = 〈X1, . . . , X5 | [X1, X4] = −2X1, [X2, X4] = X2, [X3, X4] = X2 +X3〉

for its Lie algebra whi
h has n = R4
X1,X2,X3,X5

as nilradi
al. Therefore, G 
an be

written as almost abelian Lie group R⋉µ R4
with

µ(t) = expGL(4,R)(t ad(X4)|n) =




e2t 0 0 0
0 e−t −te−t 0
0 0 e−t 0
0 0 0 1


 .

By Corollary 3.3.5, the existen
e of a latti
e in G would imply that there is

t1 ∈ R \ {0} su
h that µ(t1) is 
onjugate to an element of SL(4,Z). Clearly, the

hara
teristi
 polynomial of µ(t1) is P (X) = (X−1) P̃ (X) , where the polynomial

P̃ (X) = X3 − kX2 + lX − 1 ∈ Z[X ] has the double root e−t1
. Lemma B.4 then

implies e−t1 = 1, i.e. t1 = 0 whi
h is a 
ontradi
tion. �

Proposition 3.7.1.2. If Γ is a latti
e in a �ve-dimensional 
ompletely solvable

non-nilpotent 
onne
ted and simply-
onne
ted de
omposable Lie group G, then
G/Γ is formal.

Proof. LetG, Γ be as in the proposition. As usual, we denote by g the Lie alge-

bra of G. We have g = h ⊕ kg1 with k ∈ {1, 2} and a 
ertain (5−k)-dimensional


ompletely solvable non-nilpotent Lie algebra h, see Tables A.3 and A.1. By


ompletely solvability and Theorem 3.2.11 (ii), G/Γ and the Chevalley-Eilenberg


omplex of h ⊕ kg1 share their minimal model M. The lower dimensional dis-


ussion above shows that for all h whi
h 
an arise in the de
omposition of g the

algebras M(
∧

h∗,δh) and M(
∧

kg∗
1
,δ=0) = (

∧
kg∗1, δ = 0) are formal. This implies the

formality of M = M(
∧

h∗,δh) ⊗M(
∧

kg∗
1
,δ=0). �

3.7.2 Inde
omposable non-nilpotent Lie algebras

There are 19 
lasses of inde
omposable non-nilpotent Lie algebras in dimension

�ve whi
h are unimodular. These are listed in Tables A.4 � A.7. Instead of

the small German letters for the Lie algebras in the mentioned tables, we use


apital Latin letters (with the same subs
ripts) for the 
orresponding 
onne
ted

and simply-
onne
ted Lie groups.

We want to examine whi
h of them admit latti
es and where appropriate,

whether the quotients are formal. The non-existen
e proofs of latti
es in 
ertain

almost abelian Lie groups below are taken from Harshavardhan's thesis [38℄.

Some of the existen
e proofs of latti
es in 
ertain almost abelian Lie groups are

sket
hed in [38, pp. 29 and 30℄.
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Almost abelian algebras (with nilradi
al n := 4g1 = 〈X1, . . . , X4 | 〉)
We now 
onsider the almost abelian Lie groups G5.i = R ⋉µi

R4
. We write

µ(t) = µi(t) = expGL(4,R)(t ad(X5)|n), where X5 ∈ g5.i is as in Table A.4 (X5

depends on i). We know by Corollary 3.3.5, Theorem 3.3.6 and Proposition 3.3.7

that there is a latti
e Γ in G5.i if and only if there exists t1 6= 0 su
h that µ(t1)
is 
onjugate to µ̃(1) ∈ SL(4,Z) and Γ = Z ⋉µ̃ Z4

. This will be used in the proof

of the following propositions.

Methods to obtain integer matri
es with given 
hara
teristi
 polynomial and

ne
essary 
onditions for their existen
e are given in Appendix B.

Proposition 3.7.2.1. Let p, q, r ∈ R with −1 ≤ r ≤ q ≤ p ≤ 1, pqr 6= 0 and

p+ q+ r = −1. If the 
ompletely solvable Lie group Gp,q,r
5.7 admits a latti
e and M

denotes the 
orresponding solvmanifold, then M is formal, b1(M) = 1 and one of

the following 
onditions holds:

(i) b2(M) = 0,

(ii) b2(M) = 2, i.e. r = −1, p = −q ∈ ]0, 1[ or

(iii) b2(M) = 4, i.e. r = q = −1, p = 1.

Moreover, there exist p, q, r as above satisfying (i), (ii) resp. (iii) su
h that Gp,q,r
5.7

admits a latti
e.

Proof. We suppress the sub- and supers
ripts of G and g.

a) Assume, there is a latti
e in G and denote the 
orresponding solvmanifold

by M . Sin
e g is 
ompletely solvable, the in
lusion of the Chevallier-Eilenberg


omplex

(∧
(x1, . . . , x5), δ

)
into the forms on M indu
es an isomorphism on 
o-

homology. Moreover, the minimal model of

(∧
(x1, . . . , x5), δ

)
is isomorphi
 to

the minimal model of M .

δ is given by

δx1 = −x15, δx2 = −p x25, δx3 = −q x35, δx4 = −r x45, δx5 = 0.

(Here we write xij for xixj .) This implies b1(M) = 1.
One 
omputes the di�erential of the non-exa
t generators of degree two in the

Chevalley-Eilenberg 
omplex as

δx12 = (1 + p) x125, δx13 = (1 + q) x135, δx14 = (1 + r) x145,
δx23 = (p+ q) x235, δx24 = (p+ r) x245, δx34 = (q + r) x345.

−1 ≤ r ≤ q ≤ p ≤ 1, pqr 6= 0 and p + q + r = −1 implies p 6= −1 and q 6= −r
and a short 
omputation yields that either (i), (ii) or (iii) holds.

In ea
h 
ase, we determine the 2-minimal model, i.e. the minimal model up

to generators of degree two and will see, that these generators are 
losed. By
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De�nition 1.1.4, the minimal model then is 2-formal and Theorem 1.1.6 implies

the formality of M .

If we are in 
ase (i), the minimal model has one 
losed generator of degree

one, and no generator of degree two.

If we are in 
ase (ii), we have r = −1, p = −q ∈ ]0, 1[,

δx12 = (1 + p)x125 6= 0, δx13 = (1− p)x135 6= 0, δx14 = 0,
δx23 = 0, δx24 = (p− 1) x245 6= 0, δx34 = (−1− p) x345 6= 0,

H1(M,R) ∼= 〈[x5]〉,
H2(M,R) ∼= 〈[x14], [x23]〉,

and the 2-minimal model ρ : (
∧
V ≤2, d) →

(∧
(x1, . . . , x5), δ

)
is given by

ρ(y) = x5, |y| = 1, dy = 0;
ρ(z1) = x14, |z1| = 2, dz1 = 0;
ρ(z2) = x23, |z2| = 2, dz2 = 0.

Note, further generators of degree ≤ 2 do not o

ur, sin
e y2 = 0 (by graded


ommutativity) and ρ(yzi) is 
losed and non-exa
t. Here we use the 
onstru
tion

of the minimal model that we have given in the proof of Theorem 1.1.2.

Case (iii) is similar to 
ase (ii).

b) Now, we show that there are examples for ea
h of the three 
ases. In 
ase

(i), we follow [38℄ and 
onsider the matrix




1 0 0 −2
1 2 0 −3
0 1 3 5
0 0 1 2


 . It su�
es to show

that there are t1 ∈ R \ {0}, −1 < r < q < p < 1 with pqr 6= 0, p 6= −q, p 6= −r,
q 6= −r and p+ q + r = −1 su
h that

µ(t1) = expGL(4,R)(t1 ad(X5)|n) =




e−t1 0 0 0
0 e−pt1 0 0
0 0 e−qt1 0
0 0 0 e−rt1




is 
onjugate to the matrix above, whi
h has P (X) = X4−8X3+18X2−10X+1
as 
hara
teristi
 polynomial. P has four distin
t roots λ1, . . . , λ4 with λ1 ≈ 0, 12,
λ2 ≈ 0, 62, λ3 ≈ 2, 79 and λ4 ≈ 4, 44. De�ne t1 := − ln(λ1) and p, q, r by

e−pt1 = λ2, e
−qt1 = λ3 and e

−rt1 = λ4. Then t1, p, q, r have the desired properties.

In 
ase (ii), regard the matrix




0 0 0 −1
1 0 0 10
0 1 0 −23
0 0 1 10


 whi
h is 
onjugate to

µ(t1) =




e−t1 0 0 0
0 e−pt1 0 0
0 0 ept1 0
0 0 0 et1


 for t1 = 2 ln(3+

√
5

2
) and p = 1

2
sin
e both
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matri
es have the same 
hara
teristi
 polynomial whi
h has four distin
t real

roots.

In 
ase (iii), regard the matrix




3 0 −1 0
0 3 0 −1
1 0 0 0
0 1 0 0


 whi
h is 
onjugate to

µ(t1) =




e−t1 0 0 0
0 e−t1 0 0
0 0 et1 0
0 0 0 et1


 for t1 = ln(3+

√
5

2
) sin
e both matri
es have the

same minimal polynomial by Proposition B.8 (ii). �

We have seen that a non-formal solvmanifold is a non-toral nilmanifold in

dimensions three and four. In higher dimensions this is no longer true as the

following proposition shows:

Proposition 3.7.2.2. The 
ompletely solvable Lie group G−1
5.8 admits a latti
e.

Moreover, for ea
h latti
e Γ the 
orresponding solvmanifold M = G−1
5.8/Γ has

b1(M) = 2 and is not formal.

Proof. Again, we suppress the sub- and supers
ripts. G admits a latti
e sin
e

µ(t) = expGL(4,R)(t ad(X5)|n) =




1 −t 0 0
0 1 0 0
0 0 e−t 0
0 0 0 et


 and




0 0 0 −1
1 0 0 5
0 1 0 −8
0 0 1 5


 are


onjugated for t1 = ln(3+
√
5

2
). Note that the transformation matrix T ∈ GL(4,R)

with TAT−1 = µ(t1) is

T =




1 0 −1 −2
1

ln( 3+
√

5

2
)

1

ln( 3+
√

5

2
)

1

ln( 3+
√

5

2
)

1

ln( 3+
√

5

2
)

−5+3
√
5

10
− 1√

5
5−3

√
5

10
3
2
− 7

2
√
5

−5+3
√
5

10
1√
5

5+3
√
5

10
3
2
+ 7

2
√
5



.

Now, let Γ be an arbitrary latti
e inG. By 
ompletely solvability and Theorem

3.2.11 (ii), we get the minimal model of M = G/Γ as the minimal model M of

the Chevalley-Eilenberg 
omplex (
∧

g∗, δ). The latter is given by

δx1 = −x25, δx2 = 0, δx3 = −x35, δx4 = x45, δx5 = 0,

whi
h implies b1(M) = 2. Further, the minimal model ρ : (
∧
V, d) → (

∧
g∗, δ)

must 
ontain two 
losed generators y1, y2 whi
h map to x2 and x5. Then we

have ρ(y1y2) = x25 = −δx1 and the minimal model's 
onstru
tion in the proof

of Theorem 1.1.2 implies that there is another generator u of degree one su
h

that ρ(u) = −x1 and du = y1y2. Sin
e ρ(uy1) = −x12 and ρ(uy2) = −x15 are
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losed and non-exa
t, there are no further generators of degree one in V . But

this implies that (u+ c) y1 is 
losed and non-exa
t in M for ea
h 
losed element

c of degree one. Using the notation of Theorem 1.1.5, we have u ∈ N1, y1 ∈ V 1

and M is not formal. �

Proposition 3.7.2.3. The 
ompletely solvable Lie group Gp,−2−p
5.9 , p ≥ −1, does

not admit a latti
e.

Proof. The �rst half of the proof is taken from [38℄. Assume there is a latti
e.

µ(t) =




e−t −te−t 0 0
0 e−t 0 0
0 0 e−tp 0
0 0 0 et(2+p)


 is 
onjugate to an element of SL(4,Z) for

t = t1 6= 0 and has roots e−t1 , e−t1 , e−t1p
and et1(2+p)

. By Proposition B.6, this


an o

ur if and only if p = −1. Therefore, for the remainder of the proof we

assume p = −1.

The Jordan form of µ(t1) is




e−t 1 0 0
0 e−t 0 0
0 0 et 0
0 0 0 et


, i.e. the 
hara
teristi
 and

the minimal polynomial of µ(t1) are

P (X) = (X − e−t1)2(X − et1)2

= X4 − 2(e−t1 + et1)X3 + (e−2t1 + e2t1 + 4)X2 − 2(e−t1 + et1)X + 1,

m(X) = (X − e−t1)2(X − et1)

= X3 − (2e−t1 + et1)X2 + (e−2t1 + 2)X − e−t1 .

Sin
e µ(t1) is 
onjugate to an integer matrix, we have P (X), m(X) ∈ Z[X ] by
Theorem B.3. This is impossible for t1 6= 0. �

Proposition 3.7.2.4 ([38℄). The 
ompletely solvable Lie group G−3
5.11 does not

admit a latti
e.

Proof. If the group admits a latti
e, there exists t1 ∈ R \ {0} su
h that

the 
hara
teristi
 polynomial of µ(t1) =




e−t1 −t1e−t1 t2
1

2
e−t1 0

0 e−t1 −t1e−t1 0
0 0 e−t1 0
0 0 0 e3t1


 is a

moni
 integer polynomial with a three-fold root e−t1
and a simple root e3t1 . By

Proposition B.6, this is impossible for t1 6= 0. �

Proposition 3.7.2.5. There are q, r ∈ R with −1 ≤ q < 0, q 6= −1
2
, r 6= 0 su
h

that G−1−2q,q,r
5.13 admits a latti
e.
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Proof. We have µq,r(t) =




e−t 0 0 0
0 et+2qt 0 0
0 0 e−qt cos(rt) −e−qt sin(rt)
0 0 e−qt sin(rt) e−qt cos(rt)


 and

as 
laimed in [38℄, there exist t1 6= 0, q0, r0 su
h that µq0,r0(t1) is 
onjugate to

A :=




1 0 0 1
1 2 0 2
0 1 3 0
0 0 1 0


 whi
h implies the existen
e of a latti
e ΓA in G−1−2q0,q0,r0

5.13 .

If λ1 ≈ 0, 15 < λ2 ≈ 3, 47 denote the real roots and λ3,4 ≈ 1, 17 ± i 0, 67 the

non-real roots of PA(X) = X4−6X3+11X2−8X+1, then t1 = − ln(λ1) ≈ 1, 86,

q0 =
1
2
( ln(λ2)

t1
− 1) ≈ −0, 16 and r0 =

1
t1
arccos

(
Re(λ3)e

q0t1
)
≈ 0, 27. �

Remark. If the real number

π
t1r0

is not rational, then Theorems 3.2.11 (iii) and

3.3.8 enable us to show that the manifold G−1−2q0,q0,r0
5.13 /ΓA has b1 = 1 and is

formal.

Proposition 3.7.2.6. There exists r ∈ R\{0} su
h that G−1,0,r
5.13 admits a latti
e.

Proof. Let t1 = ln(3+
√
5

2
), r = π/t1 and A =




3 1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 −1


. Then A

is 
onjugate to µ0,r(t1) =




e−t1 0 0 0
0 et1 0 0
0 0 cos(rt1) sin(rt1)
0 0 sin(rt1) cos(rt1)


 and this implies the

existen
e of a latti
e.

Note that we have TAT−1 = µ0,r(t1), where T =




1 18+8
√
5

7+3
√
5

0 0

1 2
3+

√
5

0 0

0 0 1 0
0 0 0 1


. �

Remark. Sin
e the abelianisation of the latti
e in the last proof is isomorphi


to Z⊕ Z2
2
, the 
onstru
ted solvmanifold has b1 = 1.

Proposition 3.7.2.7. G0
5.14 admits a latti
e.

Proof. We have µ(t) =




1 −t 0 0
0 1 0 0
0 0 cos(t) − sin(t)
0 0 sin(t) cos(t)


. Let t1 = π

3
, then µ(t1)

is 
onjugate to




1 0 0 0
1 1 0 0
0 1 1 −1
0 0 1 0


, so there is a latti
e. Note that the matrix
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T =




−1 1 0 0
−π

3
0 0 0

− 1√
3

− 1√
3

2√
3

− 1√
3

1 −1 0 1


 ∈ GL(4,R) satis�es TAT−1 = µ(t1). �

Remark. The abelianisation of the latti
e in the last proof is isomorphi
 to Z2
,

i.e. the 
orresponding solvmanifold has b1 = 2.

Proposition 3.7.2.8. If there is a latti
e Γ in the Lie group G := G0
5.14 su
h

that b1(G/Γ) = 2, then G/Γ is not formal.

Proof. By Theorem 3.2.11(i), the natural in
lusion of the Chevalley-Eilenberg


omplex (
∧

g∗, δ) → (Ω(G/Γ), d) indu
es an inje
tion on 
ohomology. (
∧

g∗, δ)
is given by

δx1 = −x25, δx2 = 0, δx3 = −x45, δx4 = x35, δx5 = 0.

This implies b1(
∧
g∗, δ) = 2, hen
e H1(G/Γ,R) = 〈[x2], [x5]〉. Therefore

[x2] ·H1(G/Γ,R) +H1(G/Γ,R) · [x5] = 〈[x25]〉 = 〈[δx1]〉 = 0,

and in the Massey produ
t 〈[x2], [x2], [x5]〉 = [−x15] is no indetermina
y. Sin
e

x15 is 
losed and not exa
t, G/Γ 
annot be formal. �

Proposition 3.7.2.9. The 
ompletely solvable Lie group G−1
5.15 admits a latti
e.

For ea
h latti
e the 
orresponding solvmanifold satis�es b1 = 1 and is non-formal.

Proof. As we have done above, we suppress the sub- and supers
ripts. First,

we follow [38℄ and 
onsider the matrix A :=




2 0 0 −1
1 2 0 2
0 1 1 2
0 0 1 1


 whi
h is 
on-

jugate to µ(t1) =




e−t1 −t1e−t1 0 0
0 e−t1 0 0
0 0 et1 −t1et1
0 0 0 et1


 for t1 = ln(3+

√
5

2
). This im-

plies the existen
e of a latti
e. The transformation matrix T ∈ GL(4,R) with
TAT−1 = µ(t1) is

T =




2
5
√
5

− 1
5
√
5

− 2
5
√
5

1
2
+ 3

50

√
5

− 3+
√
5

10 ln( 3+
√

5

2
)

2+
√
5

5 ln( 3+
√

5

2
)

− (3+
√
5)2

20 ln( 3+
√

5

2
)

2+
√
5

5 ln( 3+
√

5

2
)

− 2
5
√
5

1
5
√
5

2
5
√
5

1
2
− 3

50

√
5

− 2

5(3+
√
5) ln( 3+

√
5

2
)

− −1+
√
5

5(3+
√
5) ln( 3+

√
5

2
)

−3+
√
5

5(3+
√
5) ln( 3+

√
5

2
)

− −1+
√
5

5(3+
√
5) ln( 3+

√
5

2
)



.
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Let Γ be an arbitrary latti
e in G. By 
ompletely solvability and Theorem

3.2.11 (ii), we get the minimal model of M = G/Γ as the minimal model M of

the Chevalley-Eilenberg 
omplex (
∧

g∗, δ). The latter is given by

δx1 = −x15 − x25, δx2 = −x25, δx3 = x35 − x45, δx4 = x45, δx5 = 0,

whi
h implies b1(M) = 1.
One 
omputes the di�erential of the non-exa
t generators of degree two in the

Chevalley-Eilenberg 
omplex as

δx12 = 2x125, δx13 = x145 + x235, δx14 = x245,

δx23 = x245, δx24 = 0, δx34 = −2x345.

The minimal model ρ : (
∧
V, d) → (

∧
g∗, δ) must 
ontain three 
losed generators

y, z1, z2 whi
h map to x5, x14 − x23 and x24. We see ρ(yz1) = x145 − x235 is 
losed
and non-exa
t, ρ(yz2) = x245 = δx23 and the minimal model's 
onstru
tion in the

proof of Theorem 1.1.2 implies that there is another generator u of degree two

su
h that ρ(u) = x23 and du = yz2. Sin
e ρ(uy) = x235 is 
losed and non-exa
t,

there are no further generators of degree less than or equal to two in V . But this
implies that (u+ c) y is 
losed and non-exa
t in M for ea
h 
losed element c of
degree two. Using the notation of Theorem 1.1.5, we have u ∈ N2, y ∈ V 1

and

M is not formal. �

Proposition 3.7.2.10 ([38℄). G−1,q
5.16 , q 6= 0, does not admit a latti
e.

Proof. If the group admits a latti
e, there exists t1 ∈ R\{0} su
h that the 
har-

a
teristi
 polynomial of µ(t1) =




e−t1 −t1e−t1 0 0
0 e−t1 0 0
0 0 et1 cos(t1q) −et1 sin(t1q)
0 0 et1 sin(t1q) et1 cos(t1q)


 is

a moni
 integer polynomial with simple roots et1(cos(t1q)±i sin(t1q)) and a double
root e−t1

. By Proposition B.6, this is impossible for t1 6= 0. �

Proposition 3.7.2.11. There are p, r ∈ R, p 6= 0, r /∈ {0,±1}, su
h that Gp,−p,r
5.17

admits a latti
e.

Proof. We follow [38℄ and 
onsider A :=




2 0 0 −11
1 2 0 −9
0 1 1 −1
0 0 1 1


. A is 
onjugate to

µ(t1) =




e−t1p cos(t1) −e−t1p sin(t1) 0 0
e−t1p sin(t1) e−t1p cos(t1) 0 0

0 0 et1p cos(t1r) −et1p sin(t1r)
0 0 et1p sin(t1r) et1p cos(t1r)


 for 
ertain

t1, p, r 6= 0, i.e. there is a latti
e.
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If λ1,2 ≈ 0, 306 ± i 0, 025 and λ3,4 ≈ 2, 694 ± i 1, 83 denote the roots of

PA(X) = X4 − 6X3 + 14X2 − 7X + 1, one has t1p = − ln(|λ1|) ≈ 1, 181, hen
e
t1 = arccos

(
Re(λ1)e

t1p
)
≈ 0, 062, p ≈ 14, 361. t1r = arccos

(
Re(λ3)e

t1p
)
≈ 0, 597

implies r ≈ 7, 259. �

Remark. Sin
e the abelianisation of the latti
e in the last proof is isomorphi


to Z⊕ Z3, the 
orresponding solvmanifold has b1 = 1.

Proposition 3.7.2.12. There exists p ∈ R \ {0} su
h that Gp,−p,±1
5.17 admits a

latti
e.

Proof. Let p := 1
π
ln(3+

√
5

2
), t1 := π and A :=




0 −1 0 0
1 −3 0 0
0 0 0 −1
0 0 1 −3


. Then

µ(t1) =




e−t1p cos(t1) −e−t1p sin(t1) 0 0
e−t1p sin(t1) e−t1p cos(t1) 0 0

0 0 et1p cos(±t1) −et1p sin(±t1)
0 0 et1p sin(±t1) et1p cos(±t1)


 is 
on-

jugate to A and this implies the existen
e of a latti
e. Note that we have

TAT−1 = µ(t1) with T :=




1√
5

5−3
√
5

10
0 0

0 0 1√
5

5−3
√
5

10

− 1√
5

5+3
√
5

10
0 0

0 0 − 1√
5

5+3
√
5

10



. �

Remark. The abelianisation of the latti
e in the last proof is Z ⊕ Z3
2
, i.e. the


orresponding solvmanifold has b1 = 1.

Proposition 3.7.2.13. There exists r ∈ R \ {0,±1} su
h that G0,0,r
5.17 admits a

latti
e.

Proof. Let r ∈ {2, 3}. Then µ(t) =




cos(t) sin(t) 0 0
sin(t) cos(t) 0 0
0 0 cos(tr) sin(tr)
0 0 sin(tr) cos(tr)


 is

an integer matrix for t = π. This implies the existen
e of a latti
e. �

Remark. If we 
hose in the last proof r = 2, then the 
orresponding solvmanifold

has b1 = 3. For r = 3 we obtain a solvmanifold with b1 = 1.

Proposition 3.7.2.14. G0,0,±1
5.17 admits a latti
e.

Proof. µ(t) =




cos(t) sin(t) 0 0
sin(t) cos(t) 0 0
0 0 cos(±t) sin(±t)
0 0 sin(±t) cos(±t)


 is an integer matrix for

t = π. This implies the existen
e of a latti
e. �
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Remark. The �rst Betti number of the solvmanifold indu
ed by the latti
e of

the last proof equals one.

Proposition 3.7.2.15. G0
5.18 admits a latti
e.

Proof. Again, we follow [38℄. The matrix




2 0 0 −9
1 0 0 −4
0 1 0 −3
0 0 1 0


 is 
onjugate to

µ(t1) =




cos(t1) − sin(t1) −t1 cos(t1) t1 sin(t1)
sin(t1) cos(t1) −t1 sin(t1) −t1 cos(t1)

0 0 cos(t1) − sin(t1)
0 0 sin(t1) cos(t1)


 for t1 =

π
3
. This implies

the existen
e of a latti
e.

Note, T =




4
3
√
3

− 2√
3

0 − 1√
3

0 0 0 1√
3
π

−2
√
3

π
−

√
3
π

√
3

π
1
π

0 − 3
π

− 3
π


 ∈ GL(4,R) is the transformation

matrix with TAT−1 = µ(t1). �

Remark. The abelianisation of the latti
e in the last proof is isomorphi
 to Z,
i.e. the 
orresponding solvmanifold has b1 = 1.

Algebras with nilradi
al n := g3.1 ⊕ g1 = 〈X1, . . . , X4 | [X2, X3] = X1〉
We now regard the unimodular almost-nilpotent Lie groups G5.i with nilradi
al

N := U3(R)× R, i.e. i ∈ {19, 20, 23, 25, 26, 28}. We 
an identify N with R4
as a

manifold and the group law given by

(a, b, c, r) · (x, y, z, w) = (a+ x+ bz , b+ y , c + z , r + w).

The Lie algebras of the unimodular Lie groups G5.i = R⋉µi
N with nilradi
al

N are listed in Table A.5. We have µi(t) = expN ◦ expA(n)(t ad(X5))◦ logN , where
X5 depends on i.

Assume there is a latti
e Γ in G5.i. By Corollary 3.3.5, there are t1 6= 0 and

an inner automorphism In1
of N su
h that νi := µi(t1)◦ In1

, ν−1
i ∈ A(N) preserve

the latti
e ΓN := Γ ∩N in N . For n1 = (a, b, c, r) one 
al
ulates

In1
(x, y, z, w) = (x+ bz − yc , y , z , w). (3.8)

ΓN ′ := ΓN ∩ N ′ ∼= Z is a latti
e in N ′ := [N,N ] = {(x, 0, 0, 0) | x ∈ R} ∼= R by

Theorem 3.1.4 and sin
e νi(ΓN ′), ν−1
i (ΓN ′) ⊂ ΓN ′

, we have νi|ΓN′ ∈ Aut(Z). This
implies νi|ΓN′ = ±id and hen
e µi(t1)|[N,N ] = ±id (a 
ause of (3.8) and the shape

of [N,N ]). Moreover, we have [n, n] = 〈X1〉 and sin
e expR
is the identity,

±id = µi(t1)|[N,N ] = expA(n)(t1 ad(X5)|n)|[N,N ].
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(Note that expN([n, n]) = [N,N ] by [76, Theorem 3.6.2℄.) Therefore, t1[X5, X1]
has no 
omponent in 〈X1〉 and sin
e t1 6= 0, this means that [X1, X5] has no


omponent in X1-dire
tion. The list of Lie algebras in Table A.5 implies:

Proposition 3.7.2.16. The only 
onne
ted and simply-
onne
ted solvable Lie

groups with nilradi
al U3(R)×R that 
an 
ontain a latti
e are G−1
5.20 and G

0,±1
5.26 . �

Proposition 3.7.2.17. G−1
5.20 admits a latti
e. For ea
h latti
e the 
orresponding

solvmanifold admits a 
onta
t form, is formal and has b1 = 2.

Proof. Using Theorem 3.1.1, one shows that

γ1 := (
20 + 9

√
5

9 + 4
√
5
, 0, 0, 0),

γ2 := (
181 + 81

√
5

47 + 21
√
5
,
18 + 8

√
5

7 + 3
√
5
,

2

3 +
√
5
, 0),

γ3 := (
181 + 81

√
5

47 + 21
√
5
, 1, 1, 0),

γ4 := (0, 0, 0,− 20 + 9
√
5

(9 + 4
√
5) ln(3+

√
5

2
)
)

generate a latti
e ΓN in N with [γ2, γ3] = γ1 and γ1, γ4 
entral.
A short 
al
ulation yields that µ(t)

(
(x, y, z, w)

)
= (x−tw, e−ty, etz, w) de�nes

a one-parameter group in A(N). Moreover, for t1 = ln(3+
√
5

2
) holds µ(t1)(γ1) = γ1,

µ(t1)(γ2) = γ3, µ(t1)(γ3) = γ−1
2 γ33 and µ(t1)(γ4) = γ1γ4.

This implies the existen
e of a latti
e in G := G−1
5.20 = R⋉µ N .

Let Γ be an arbitrary latti
e in G. By 
ompletely solvability and Theorem

3.2.11 (ii), we get the minimal model of M = G/Γ as the minimal model M of

the Chevalley-Eilenberg 
omplex (
∧

g∗, δ). The latter is given by

δx1 = −x23 − x45, δx2 = −x25, δx3 = x35, δx4 = δx5 = 0,

whi
h implies b1(M) = 2. Moreover, x1 de�nes a left-invariant 
onta
t form on

G/Γ.
One 
omputes the di�erential of the non-exa
t generators of degree two in the

Chevalley-Eilenberg 
omplex as

δx12 = x125 − x245, δx13 = −x135 − x345, δx14 = −x234,
δx15 = −x235, δx23 = 0, δx24 = x245,

δx34 = −x345, δx45 = 0.

The minimal model ρ : (
∧
V, d) → (

∧
g∗, δ) must 
ontain two 
losed generators

y1, y2 whi
h map to x4 and x5. We see ρ(y1y2) = x45 is 
losed and non-exa
t.

Sin
e b2(G/Γ) = 1, the minimal model's 
onstru
tion in the proof of Theorem

1.1.2 implies that there are no further generators of degree less than or equal to

two in V . This implies that G/Γ is formal. �
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Proposition 3.7.2.18. G0,ε
5.26 admits a latti
e for ε = ±1. For ea
h latti
e the


orresponding solvmanifold is 
onta
t and has b1 ≥ 2.

Proof. One 
al
ulates that µ : R → A(N) de�ned by

µ(t)
(
(x, y, z, w)

)

=
(
x+ ht(y, z)− εtw, cos(tπ) y − sin(tπ) z, sin(tπ) y + cos(tπ) z, w

)
,

where ht(y, z) = 1
2
sin(tπ)

(
cos(tπ)

(
y2 − z2

)
− 2 sin(tπ)yz

)
, is a one-parameter

group.

Then we have G := G0,ε
5.26 = R⋉µN and Z⋉µ {(x, y, z, w) ∈ N | x, y, z, w ∈ Z}

is a latti
e in G sin
e µ(1)
(
(x, y, z, w)

)
= (x− εw,−y,−z, w).

Using de(µ(t)) = logN ◦µ(t) ◦ expN
, we obtain the Lie algebra g of G as

〈X1, . . .X5 | [X2, X3] = X1, [X2, X5] = X3, [X3, X5] = −X2, [X4, X5] = εX1〉.

Denote {x1, . . . , x5} the basis of g∗ whi
h is dual to {X1, . . . , X5}, i.e. the xi are
left-invariant 1-forms on G. One 
al
ulates that x1 is a left-invariant 
onta
t form
on G, so it des
ends to a 
onta
t form on the 
orresponding solvmanifold.

The statement about the �rst Betti number follows from Theorem 3.2.11(i). �

Remark. Sin
e the abelianisation of the latti
e in the last proof is isomorphi


to Z2 ⊕ Z2
2, the 
orresponding solvmanifold has b1 = 2.

Algebras with nilradi
al g4.1 = 〈X1, . . . , X4 | [X2, X4] = X1, [X3, X4] = X2〉
Proposition 3.7.2.19. No 
onne
ted and simply-
onne
ted solvable Lie group

G5.i with nilradi
al N := G4.1 admits a latti
e.

Proof. There is only one unimodular 
onne
ted and simply-
onne
ted solvable

Lie group with nilradi
al G4.1, namely the 
ompletely solvable group G := G
− 4

3

5.30.

We show that it admits no latti
e.

The group N is R4
as a manifold with multipli
ation given by

(a, b, c, r) · (x, y, z, w) = (a+ x+ wb+
1

2
w2c , b+ y + wc , c+ z , r + w),

and one 
al
ulates for n1 = (a, b, c, r)

In1
(x, y, z, w) = (x+ wb+

1

2
w2c− ry − rwc+

1

2
r2z , y + wc− rz , z , w).

Let G = R ⋉µ N , where µ(t) = expN ◦ expA(n)(t ad(X5)|n) ◦ logN and assume

there is a latti
e Γ in G. By Corollary 3.3.5, there are t1 6= 0 and n1 ∈ N su
h

that ν := µ(t1) ◦ In1
∈ A(N) preserves the latti
e ΓN := Γ ∩N in N .
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ΓN ′ := N ′∩ΓN is a latti
e in N ′ := [N,N ] = {(x, y, 0, 0) ∈ N | x, y ∈ R} ∼= R2

by Theorem 3.1.4, and sin
e ν(N ′) ⊂ N ′
, this latti
e is preserved by ν|N ′

. This

and expR2

= id imply

±1 = det(ν|N ′) = det
(
expA(n)(t1 ad(X5)|n)|[N,N ]

)
· det(In1

|N ′)︸ ︷︷ ︸
= 1

,

i.e. ad(X5)|[n,n] has tra
e equal to zero. This and [n, n] = 〈X1, X2 | 〉 
ontradi
ts
g
− 4

3

5.30, see Table A.6. �

Non-almost nilpotent algebras

Now, there remain two unimodular 
onne
ted and simply-
onne
ted solvable Lie

groups in dimension �ve, namely G−1,−1
5.33 and G−2,0

5.35 . Unfortunately, we do not

know whether the former group admits a latti
e or not. Note, Harshavardhan's

argumentation in [38, p. 33℄ is not su�
ient.

Remark. If the 
ompletely solvable Lie group G−1,−1
5.33 admits a latti
e, one easily

proves that the 
orresponding solvmanifold admits a 
onta
t form (sin
e G−1,−1
5.33

possesses the left-invariant 
onta
t form x1 + x2 + x3 with xi dual to Xi ∈ g
−1,−1
5.33

as in Table A.7), is formal and has b1 = 2.

Remark. In April 2009, A. Diatta and B. Foreman proved that G−1,−1
5.33 possesses

a latti
e.

Proposition 3.7.2.20. G−2,0
5.35 
ontains a latti
e. For ea
h latti
e the 
orrespond-

ing solvmanifold is 
onta
t and has b1 ≥ 2.

Proof. A latti
e and a 
onta
t form were 
onstru
ted by Geiges in [32℄. One

has the left-invariant 
onta
t form x1+x2 on the Lie group, where x1, x2 are dual
to the left-invariant ve
tor �elds as in Table A.7. Hen
e the form des
ends to

ea
h 
ompa
t quotient by a dis
rete subgroup.

The statement about the �rst Betti number follows from Theorem 3.2.11(i). �

Con
lusion

We have seen that ea
h 
onne
ted and simply-
onne
ted 5-dimensional solvable

Lie group admits a latti
e if it is nilpotent or de
omposable with the ex
eption

of G4.2 × R. If an inde
omposable non-nilpotent group G5.i gives rise to a solv-

manifold it is 
ontained in Table 3.3. Re
all, by Theorem 3.2.11, we always have

a lower bound for the solvmanifold's Betti numbers and in some 
ases the exa
t

value. These 
an be read of in the se
ond and the third 
olumn. The last 
olumn

refers to the examples that we have 
onstru
ted above. �yes� means that we have

su
h for 
ertain parameters that satisfy the 
onditions of the 
olumn �Comment�.

Ex
ept for i = 33 we have examples for all possible values of i.
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Table 3.3: 5-dimensional inde
omposable non-nilmanifolds

b1 b2 formal Comment Example

Gp,q,r
5.7 1 0 yes −1 < r < p < q < 1, 3.7.2.1 (i)

pqr 6= 0,
p+ q + r = −1

Gp,q,−1
5.7 1 2 yes p = −q ∈]0, 1[ 3.7.2.1 (ii)

G1,−1,−1
5.7 1 4 yes 3.7.2.1 (iii)

G−1
5.8 2 3 no 3.7.2.2

G−1−2q,q,r
5.13 ≥ 1 ≥ 0 ? q ∈ [−1, 0] \ {1

2
}, 3.7.2.5

r 6= 0

G−1,0,r
5.13 ≥ 1 ≥ 2 ? r 6= 0 3.7.2.6

G0
5.14 ≥ 2 ≥ 3 ? 3.7.2.7

G−1
5.15 1 2 no 3.7.2.9

Gp,−p,r
5.17 ≥ 1 ≥ 0 ? p 6= 0, r /∈ {0,±1} 3.7.2.11

Gp,−p,±1
5.17 ≥ 1 ≥ 2 ? p 6= 0 3.7.2.12

G0,0,r
5.17 ≥ 1 ≥ 2 ? r /∈ {0,±1} 3.7.2.13

G0,0,±1
5.17 ≥ 1 ≥ 4 ? 3.7.2.14

G0
5.18 ≥ 1 ≥ 2 ? 3.7.2.15

G−1
5.20 2 1 yes 3.7.2.17

G0,±1
5.26 ≥ 2 ≥ 1 ? 3.7.2.18

G−1,−1
5.33 2 1 yes no

G−2,0
5.35 ≥ 2 ≥ 1 ? 3.7.2.20

Assuming that there is a latti
e in one the non-
ompletely solvable Lie groups

G5.i, i.e. i ∈ {13, 14, 17, 18, 26, 35}, su
h that the inequalities in the table on

page 64 are equalities, then one 
an 
al
ulate that su
h quotients are formal for

i ∈ {13, 17, 26, 35} and not formal for i ∈ {14, 18}. The assumptions about the

Betti numbers are needed to ensure that the Lie algebra 
ohomology is isomorphi


to the solvmanifold's 
ohomology.

3.7.3 Conta
t stru
tures

Some of the 
onne
ted and simply-
onne
ted �ve-dimensional solvable Lie groups

G5.i whi
h admit a latti
e Γ possess a left-invariant 
onta
t form. Obviously, it

also de�nes a 
onta
t form on the 
orresponding solvmanifold. By this way,

we showed that the manifolds G5.i/Γ for i ∈ {4, 5, 6} and quotients of almost

nilpotent groups with non-abelian nilradi
al (i.e. i ≥ 19) by latti
es are 
onta
t.

But R5
, U3(R) × R2

, G4.1 × R and G5.i do not have a left-invariant 
onta
t

form for i ∈ {1, 2, 3, 7, . . . , 18}, see e.g. [17℄. For some of the nilmanifolds, we 
an

provide a 
onta
t stru
ture by another approa
h.
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Theorem 3.7.3.1. Let G ∈ {R5, U3(R)×R2, G4.1×R, G5.1, G5.3} and Γ a latti
e

G. Then G/Γ admits a 
onta
t stru
ture.

Proof. For G 
hosen as in the theorem, the dimension of the 
enter is greater

than or equal to two. Therefore, we 
an �nd a two-dimensional 
losed normal

subgroup that lies in the 
enter su
h that its interse
tion with Γ is a latti
e in it.

By Theorem 3.2.6, G/Γ has the stru
ture of a prin
ipal T 2
-bundle over a three

dimensional 
losed orientable manifold. Then the following result of Lutz implies

the 
laim. �

Theorem 3.7.3.2 ([51℄). The total spa
e of a prin
ipal T 2
-bundle over a 
losed

orientable 3-manifold admits a 
onta
t form. �

Unfortunately, we did not �nd a 
onta
t stru
ture on the manifold of Propo-

sition 3.7.2.9. If su
h exists, this yields a �ve-dimensional non-formal 
onta
t

solvmanifold with b1 = 1.

3.8 Six-dimensional solvmanifolds

There are 164 types of 
onne
ted and simply-
onne
ted inde
omposable solv-

able Lie groups in dimension six, most of them depending on parameters. For


lassifying six-dimensional solvmanifolds, we restri
t ourselves to the following

types:

(a) nilmanifolds,

(b) symple
ti
 solvmanifolds that are quotients of inde
omposable groups whi
h

are not nilpotent,

(
) produ
ts of lower-dimensional solvmanifolds.

Although we have to make some restri
tions to get a manageable number of


ases, one 
ertainly has to 
onsider types (a) and (
). Con
erning the third type,

the reader 
an even ask the legitimate question why we do not 
onsider arbitrary

latti
es in produ
ts of lower dimensional solvable Lie groups G1, G2, instead of

dire
t produ
ts Γ1×Γ2 of latti
es Γi in the fa
tors Gi. The reason is that we have

no tool to 
onstru
t arbitrary latti
es or disprove their existen
e, unless we 
an

ensure that they 
ontain the semidire
t fa
tor Z. (When we wanted to investigate

G−1,−1
5.33 , we already had this problem.)

The further restri
tion in (b) is justi�ed by the large number of inde
ompos-

able non-nilpotent solvable Lie algebras in dimension six: There are 140 types of

it. The author has de
ided to 
onsider the most interesting among them. Sin
e

we are not able to refute a symple
ti
 form's existen
e in the non-
ompletely

solvable 
ase, we shall partly make even more restri
tions.
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3.8.1 Nilmanifolds

There are 34 isomorphism 
lasses of nilpotent Lie algebras in dimension six.

Ea
h of them possesses a basis with rational stru
ture 
onstants and therefore

determines a nilmanifold. They are listed on page 67 in Table 3.4 whi
h is taken

from [68℄. The 
orresponding Lie algebras are listed in Appendix A. Among the

34 
lasses of nilmanifolds, there are 26 whi
h admit a symple
ti
 form.

Re
all that a nilmanifold is formal or Kählerian if and only if the 
orrespond-

ing Lie algebra is abelian.

3.8.2 Candidates for the existen
e of latti
es

Among the 61 types of inde
omposable unimodular almost nilpotent Lie algebras

in dimension six that are listed in Tables A.10 � A.23, there are some that 
annot

be the Lie algebra of a 
onne
ted and simply-
onne
ted Lie group whi
h admits

a latti
e.

Instead of the small German letters for the Lie algebras in the mentioned

tables, we use again 
apital Latin letters with the same subs
ripts for the 
orre-

sponding 
onne
ted and simply-
onne
ted Lie groups. If any, we 
hose the same

designation for the parameters a, b, c, h, s, ε of G6.i as for their Lie algebras.

Proposition 3.8.2.1. Let i ∈ {13, . . . , 38}, i.e. Nil(G6.i) = U3(R) × R2
. Then

it is ne
essary for G6.i to 
ontain a latti
e that one of the following 
onditions

holds:

i = 13, a = −b 6= 0, h = −1; i = 15; i = 18, a = −1;
i = 21, a = 0; i = 23, a = 0; i = 25, b = 0;
i = 26; i = 29, b = 0; i = 32, a = ε = 0 < h;
i = 33, a = 0; i = 34, a = 0; i = 35, a = −b 6= 0, c = 0;
i = 36, a = 0; i = 37, a = 0, s 6= 0; i = 38.

Proof. This 
an be seen analogous as in the proof of Proposition 3.7.2.16.

Denote {X1, . . . , X6} the basis used for the des
ription of the Lie algebra in

Tabels A.12 � A.14. Then the existen
e of a latti
e implies that [X6, X1] has no

omponent in X1-dire
tion and this yields the 
laim. �

Proposition 3.8.2.2. Let i ∈ {39, . . . , 47}, i.e. the nilradi
al of G6.i is G4.1×R.
If G6.i admits a latti
e, then holds i = 39 ∧ h = −3 or i = 40.

Proof. Use the designationX1, . . . , X6 as above. Then 〈X1, X2〉 is the 
ommu-

tator of the nilradi
al of g6.i. Analogous as in the proof of Proposition 3.7.2.19,

one shows that ad(X6)|〈X1,X2〉 has tra
e equal to zero. This is only satis�ed for

i = 39 ∧ h = −3 or i = 40. �
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Table 3.4: 6-dimensional nilmanifolds

b1(G/Γ) b2(G/Γ) Comment g

6 15 Torus, symple
ti
 6g1

5 11 symple
ti
 g3.1 ⊕ 3g1

5 9 not symple
ti
 g5.4 ⊕ g1

4 9 symple
ti
 g5.1 ⊕ g1

4 8 symple
ti
 2g3.1
4 8 symple
ti
 g6.N4

4 8 symple
ti
 g6.N5

4 7 symple
ti
 g5.5 ⊕ g1
4 7 symple
ti
 g4.1 ⊕ 2g1

4 6 not symple
ti
 g6.N12

3 8 symple
ti
 g6.N3

3 6 symple
ti
 g6.N1

3 6 symple
ti
 g6.N6

3 6 symple
ti
 g6.N7

3 5 symple
ti
 g5.2 ⊕ g1
3 5 not symple
ti
 g5.3 ⊕ g1
3 5 symple
ti
 g5.6 ⊕ g1
3 5 symple
ti
 g6.N8

3 5 symple
ti
 g6.N9

3 5 symple
ti
 g6.N10

3 5 not symple
ti
 g6.N13

3 5 not symple
ti
 g16.N14

3 5 not symple
ti
 g−1
6.N14

3 5 symple
ti
 g6.N15

3 5 symple
ti
 g6.N17

3 4 symple
ti
 g6.N16

2 4 symple
ti
 g6.N11

2 4 symple
ti
 g16.N18

2 4 symple
ti
 g−1
6.N18

2 3 symple
ti
 g6.N2

2 3 symple
ti
 g6.N19

2 3 symple
ti
 g6.N20

2 2 not symple
ti
 g6.N21

2 2 not symple
ti
 g6.N22
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Proposition 3.8.2.3.

(i) Let i ∈ {54, . . . , 70}, i.e. the nilradi
al of G6.i is G5.1. If G6.i admits a

latti
e, then holds i = 54∧ l = −1, i = 63, i = 65∧ l = 0 or i = 70∧ p = 0.

(ii) No 
onne
ted and simply-
onne
ted almost nilpotent Lie group with nilrad-

i
al G5.2 or G5.5 admits a latti
e. �

Proof. This follows in the same manner as the last proposition. The tra
e of

ad(X6) restri
ted to the 
ommutator of the nilradi
al must be zero. �

3.8.3 Symple
ti
 solvmanifolds whose �rst Betti number

equals one

If we are looking for solvmanifolds with b1 = 1, it is ne
essary that the 
orre-

sponding Lie algebra is unimodular, almost nilpotent and has b1 = 1 itself. Note

that the latter for
es the algebra to be inde
omposable. In Tables A.27 � A.29

on pages 115 � 117 we have listed all possible values that 
an arise as b1 for

the 
lasses of unimodular non-nilpotent solvable inde
omposable Lie algebras in

dimension six.

Sin
e we are mainly interested in symple
ti
 6-manifolds, we now investigate

whi
h Lie algebras 
ontained in Tables A.10 � A.23 that satisfy b1 = 1 are 
o-

homologi
ally symple
ti
, i.e. there is a 
losed element ω ∈ ∧2
g∗ su
h that ω3

is

not exa
t.

Note, if a unimodular Lie algebra is 
ohomologi
ally symple
ti
, then ea
h


ompa
t quotient of the 
orresponding Lie group by a latti
e is symple
ti
. If

the Lie algebra is 
ompletely solvable, this is even ne
essary for the quotient to

be symple
ti
.

Proposition 3.8.3.1. Let g6.i be a unimodular almost-nilpotent Lie algebra with

b1(g6.i) = 1. Then we have:

g6.i is 
ohomologi
ally symple
ti
 if and only if i ∈ {15, 38, 78}.

Proof. For i ∈ {15, 38, 78} one 
omputes all symple
ti
 forms up to exa
t

summands as

i = 15 : ω = (λ+ µ) x16 + λ x25 − µ x34, λ, µ ∈ R \ {0}, λ 6= −µ,

i = 38 : ω = λ x16+µ x24+
λ
2
x25 − λ

2
x34 +µ x35, λ, µ ∈ R, λ 6= 0,−3

2
λ3 6= 2λµ2,

i = 78 : ω = λ x14 + λ x26 + λ x35, λ ∈ R \ {0}.

If i /∈ {15, 38, 78}, then the 
onditions on the parameters of g6.i to ensure its

unimodularity and b1(g6.i) = 1 imply that there are no 
losed elements of

∧2
g∗6.i

without exa
t summands whi
h 
ontain one of the elements x16, x26, x36, x46 or

x56. Therefore, g6.i 
annot be 
ohomologi
ally symple
ti
. �
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Remark. We give an expli
it example of the argumentation in the last proof for

i = 2:
g6.2 depends on three parameters a, c, d ∈ R with 0 < |d| ≤ |c| ≤ 1 and the

bra
kets are given in Table A.11 as

[X1, X6] = aX1, [X2, X6] = X1 + aX2, [X3, X6] = X3,
[X4, X6] = cX4, [X5, X6] = dX5.

The 
ondition of unimodularity implies 2a + c + d = −1. Moreover, if �rst the

Betti number equals one, we see in Tabular A.27 that a 6= 0.
The Chevalley-Eilenberg 
omplex is given by

δx1 = −a x16 − x26, δx2 = −a x26, δx3 = −x36,
δx4 = −c x46, δx5 = −d x56, δx6 = 0

and sin
e a, c, d 6= 0, x26, x36, x46, x56 are exa
t. Moreover, x16 = δ(− 1
a
x1 +

1
a2
x2)

is exa
t, too. This implies the 
laim.

We now examine the three Lie groups that have 
ohomologi
ally symple
ti


Lie algebras.

The next theorem was announ
ed in Chapter 2. It provides an example of

a symple
ti
 non-formal 6-manifold with b1 = 1. Sin
e it is a solvmanifold, this

manifold is symple
ti
ally aspheri
al. Hen
e, we found an example for whi
h

K�edra, Rudyak and Tralle looked in [48, Remark 6.5℄.

Theorem 3.8.3.2.

(i) The 
ompletely solvable Lie group G−1
6.15 
ontains a latti
e.

(ii) If Γ is any latti
e in G := G−1
6.15, then M := G/Γ is a symple
ti
 and

non-formal manifold with b1(M) = 1 and b2(M) = 2.

Proof. ad (i): Let N = U3(R)×R2
denote the nilradi
al of G. We 
an identify

N with R5
as a manifold and the multipli
ation given by

(a, b, c, r, s) · (x, y, z, v, w) = (a+ x+ bz, b+ y, c+ z, r + v, s+ w),

i.e. [N,N ] = {(x, 0, 0, 0, 0) | x ∈ R} ∼= R and N := N/[N,N ] ∼= R4
.

By de�nition of G, we have G = R⋉µ N , where

∀t∈R µ(t) = expN ◦ expA(n)(t




0 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 −1 0 −1 0
0 0 −1 0 1



) ◦ logN , (3.9)
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and sin
e expR4

= id, the indu
ed maps µ(t) : N → N are given by

µ(t)
(
(y, z, v, w)

)
= expGL(4,R)(t




−1 0 0 0
0 1 0 0
−1 0 −1 0
0 −1 0 1


)




y
z
v
w




=




e−t 0 0 0
0 et 0 0

−te−t 0 e−t 0
0 −tet 0 et







y
z
v
w


 .

One 
al
ulates that µ̃ : R → A(N) given by

∀t∈R ∀(x,y,z,v,w)∈N µ̃(t)
(
(x, y, z, v, w)

)
=
(
x, µ(t)

(
(y, z, v, w)

))
(3.10)

is a one-parameter group, and sin
e the derivations of (3.9) and (3.10) in zero are

equal, we have µ ≡ µ̃.

Let t1 = ln(3+
√
5

2
), then µ(t1) is 
onjugate to A :=




2 1 0 0
1 1 0 0
2 1 2 1
1 1 1 1


. The

transformation matrix T ∈ GL(4,R) with TAT−1 = µ(t1) is

T =




1 −2(2+
√
5)

3+
√
5

0 0

1 1+
√
5

3+
√
5

0 0

0 0 ln( 2
3+

√
5
)

2(2+
√
5) ln( 3+

√
5

2
)

3+
√
5

0 0 ln( 2
3+

√
5
) − (1+

√
5) ln( 3+

√
5

2
)

3+
√
5



.

Denote by {b1, . . . , b4} the basis of R4
for whi
h µ(t1) is represented by A, i.e. bi

is the i-th 
olumn of T . One 
al
ulates

b11b22 − b12b21 =
√
5,

bi1bj2 − bi2bj1 = 0 for i < j, (i, j) 6= (1, 2).

This implies that we have for γ0 := (
√
5, 0R4), γi := (bi0, bi) ∈ N with arbitrary

bi0 ∈ R, i = 1, . . . , 4,

[γ1, γ2] = γ0, [γ1, γ3] = [γ1, γ4] = [γ2, γ3] = [γ2, γ4] = [γ3, γ4] = eN .

We 
an 
hoose the bi0 su
h that the following equations hold:

µ(t1)(γ0) = γ0,
µ(t1)(γ1) = γ21 γ2 γ23 γ4,
µ(t1)(γ2) = γ1 γ2 γ3 γ4,
µ(t1)(γ3) = γ23 γ4,
µ(t1)(γ4) = γ3 γ4.

(3.11)
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Note that (3.11) leads to the equation (id − τA)




b10
b20
b30
b40


 =




1 + 2(1+
√
5)

3+
√
5

1+
√
5

3+
√
5

0
0




whi
h has the (unique) solution b10 = −1+
√
5

3+
√
5
, b20 = −11+5

√
5

7+3
√
5
and b30 = b40 = 0.

We 
laim that t1Z ⋉µ 〈expN
(
SpanZ log

N ({γ0, . . . , γ4})
)
〉 de�nes a latti
e in

G:
It su�
es to show that 〈expN

(
SpanZ log

N({γ0, . . . , γ4})
)
〉 de�nes a latti
e

in N , so let us prove this assertion. There exist uniquely Y0, . . . , Y4 ∈ n with

expN(Yi) = γi for i ∈ {0, . . . , 4}. If we prove that Y := {Y0, . . . , Y4} is a ba-

sis of n with rational stru
ture 
onstants, then Theorem 3.1.1 (i) implies that

〈expN(SpanZY)〉 is a latti
e in N .

We identify n with R5
and bra
kets given by the Campbell-Hausdor� formula,

see e.g. [76, Chapter 2.15℄. Sin
e n is 2-step nilpotent (and expN
is a di�eomor-

phism), the formula yields for all V,W ∈ n

logN
(
expN(V ) expN (W )

)
= V +W +

1

2
[V,W ].

Sin
e U3(R) 
an be 
onsidered as a group of matri
es, one 
an easily 
al
ulate

its exponential map. Then, its knowledge implies that the exponential map resp.

the logarithm of N is given by

expN
(
(x, y, z, v, w)

)
= (x+ 1

2
yz, y, z, v, w),

logN
(
(x, y, z, v, w)

)
= (x− 1

2
yz, y, z, v, w),

and we obtain Y0 = (
√
5, 0R4), Y1 = (b10 − 1

2
, b1), Y2 = (b20 +

(2+
√
5)(1+

√
5)

(3+
√
5)2

, b2),

Y3 = (0, b3), Y4 = (0, b4), [Y1, Y2] = Y0. The other bra
kets vanish.
ad (ii): Let Γ be an arbitrary latti
e in G. By 
ompletely solvability and

Theorem 3.2.11 (ii), we get the minimal model of M = G/Γ as the minimal

model M of the Chevalley-Eilenberg 
omplex (
∧

g∗, δ). The latter has the 
losed
generator x6 and the non-
losed generators satisfy

δx1 = −x23, δx2 = −x26, δx3 = x36, δx4 = −x26 − x46, δx5 = −x36 + x56,

whi
h implies b1(M) = 1.
One 
omputes the di�erential of the non-exa
t generators of degree two in the

Chevalley-Eilenberg 
omplex as

δx12 = x126, δx13 = −x136, δx14 = x126 + x146 − x234,
δx15 = x136 − x156 − x235, δx16 = −x236, δx24 = 2x246,
δx25 = x236, δx34 = −x236, δx35 = −2x356,
δx45 = x256 − x346,

i.e. b2(M) = 2.
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The minimal model ρ : (
∧
V, d) → (

∧
g∗, δ) must 
ontain three 
losed gen-

erators y, z1, z2 whi
h map to x6, x16 + x25 and x16 − x34. ρ(yz1) = x256 and

ρ(yz2) = −x346 are 
losed and not exa
t. But in the generation of y, z1 and z2 is
one (and up to a s
alar only one) element that maps onto an exa
t form, namely

ρ(y(z1 + z2)) = δx45. The minimal model's 
onstru
tion in the proof of Theorem

1.1.2 implies that there is another generator u of degree two su
h that ρ(u) = x45
and du = y(z1 + z2). Sin
e ρ(yu) = x456 is 
losed and non-exa
t, there are no

further generators of degree less than or equal to two in V . But this implies for

ea
h 
losed element c of degree two that y (u+ c) is 
losed and non-exa
t in M.

Using the notation of Theorem 1.1.5, we have u ∈ N2, y ∈ V 1
and M is not

formal.

Finally, the existen
e of a symple
ti
 form on G/Γ follows from Proposition

3.8.3.1. �

Proposition 3.8.3.3.

(i) Ea
h quotient of the Lie group G0
6.38 by a latti
e is symple
ti
. G

0
6.38 
ontains

a latti
e Γ with b1(G
0
6.38/Γ) = 1.

(ii) If the Lie group G0
6.38 
ontains a latti
e Γ su
h that M := G0

6.38/Γ satis-

�es b1(M) = 1 and b2(M) = 2, then M is a symple
ti
 and non-formal

manifold.

Proof. The proof is similar to that of the last theorem. Therefore, we just

give a sket
h of the proof.

ad (i): The existen
e of a symple
ti
 form on ea
h quotient of G := G0
6.38 by

a latti
e follows from Proposition 3.8.3.1.

The nilradi
al N of G is the same as in the proof of Theorem 3.8.3.2, so we

have [N,N ] = R and N = N/[N,N ] = R4
. If µ(t) : N → N is de�ned by

µ(t)
(
(y, z, v, w)

)
= expGL(4,R)(t




0 1 0 0
−1 0 0 0
−1 0 0 1
0 −1 −1 0


)




y
z
v
w




=




cos(t) sin(t) 0 0
− sin(t) cos(t) 0 0
−t cos(t) −t sin(t) cos(t) sin(t)
t sin(t) −t cos(t) − sin(t) cos(t)







y
z
v
w


 ,

one 
al
ulates that µ : R → A(N) given by

µ(t)
(
(x, y, z, v, w)

)
=

(
x− sin2(t)yz +

sin(t) cos(t)

2
(z2 − y2) + t

√
3

8
(y − z),

µ(t)
(
(y, z, v, w)

) )
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is a one-parameter group with de(µ(t)) = expA(n)(t




0 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 −1 0 −1 0
0 0 −1 0 1




︸ ︷︷ ︸
= ad(X6)|n

), i.e.

G = R ⋉µ N . (Here X6 is 
hosen as in the last line of Table A.14 on page 110.)

For t1 :=
π
3
we have

µ(t1)
(
(x, y, z, v, w)

)
=
(
x− 3

4
yz +

√
3

8
(z2 − y2) +

π

8
√
3
(y− z), µ(t)

(
(y, z, v, w)

))
,

and in order to 
onstru
t a latti
e in G, it is enough to 
onstru
t a latti
e in N

that is preserved by µ(t1). µ(t1) is 
onjugate to A :=




−1 −3 0 0
1 2 0 0
−2 −3 −1 −3
1 1 1 2




and the transformation matrix T ∈ GL(4,R) with TAT−1 = µ(t1) is

T =




√
3
π

0 0 0
− 3

π
− 6

π
0 0

0 0 − 2√
3

−
√
3

0 0 0 1


 .

Denote by {b1, . . . , b4} the basis of R4
for whi
h µ(t1) is represented by A, i.e. bi

is the i-th 
olumn of T . One 
al
ulates

b11b22 − b12b21 =
−6

√
3

π2
,

bi1bj2 − bi2bj1 = 0 for i < j, (i, j) 6= (1, 2).

This implies that we have for γ0 := (b11b22 − b12b21, 0R4), γi := (bi0, bi) ∈ N with

arbitrary bi0 ∈ R, i = 1, . . . , 4,

[γ1, γ2] = γ0, [γ1, γ3] = [γ1, γ4] = [γ2, γ3] = [γ2, γ4] = [γ3, γ4] = eN .

If we set b10 = 1488
√
3+72

√
3π−19

√
3π2+4π3

128π2 , b20 = 2736
√
3+216

√
3π−25

√
3π2+12π3

128π2 and

b30 = b40 = 0, we obtain

µ(t1)(γ0) = γ0,
µ(t1)(γ1) = γ−1

1 γ2 γ−2
3 γ4,

µ(t1)(γ2) = γ−3
1 γ22 γ−3

3 γ4,
µ(t1)(γ3) = γ−1

3 γ4,
µ(t1)(γ4) = γ−3

3 γ24 .
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Then 〈expN
(
SpanZ log

N({γ0, . . . , γ4})
)
〉 is a latti
e in N . This 
an be seen by

a similar 
omputation as in the proof of the last theorem. Finally, one 
he
ks

that the abelianisation of this latti
e is isomorphi
 to Z, hen
e the 
orresponding
solvmanifold has b1 = 1.

ad (ii): Let Γ be a latti
e in G su
h that b1(G/Γ) = 1 and b2(G/Γ) = 2.
The Chevalley-Eilenberg 
omplex (

∧
g∗, δ) has the 
losed generator x6 and δ

is given on the non-
losed generators by

δx1 = −x23, δx2 = x36, δx3 = −x26, δx4 = −x26 + x56, δx5 = −x36 − x46,

whi
h implies H1(
∧

g∗, δ) = 〈[x6]〉.
One 
omputes the di�erential of the non-exa
t generators of degree two in the

Chevalley-Eilenberg 
omplex as

δx12 = −x136, δx13 = x126,
δx14 = x126 − x156 − x234, δx15 = x136 + x146 − x235,
δx16 = −x236, δx24 = −x256 − x346,
δx25 = x236 + x246 − x356, δx34 = −x236 + x246 − x356,
δx35 = x256 + x346, δx45 = x256 − x346,

i.e. H2(
∧

g∗, δ) = 〈[x16 + 1
2
x25 − 1

2
x34], [x24 + x35]〉.

This implies that G/Γ and (
∧
g∗, δ) have the same Betti numbers and there-

fore, by Theorem 3.2.11, they share their minimal model.

The minimal model ρ : (
∧
V, d) → (

∧
g∗, δ) must 
ontain three 
losed genera-

tors y, z1, z2 whi
h map to x6, x16+
1
2
x25− 1

2
x34 and x24+x35. ρ(yz2) = x246+x356

is 
losed and not exa
t. But ρ(yz1) =
1
2
(x256 − x346) =

1
2
δx45 is exa
t. Hen
e the

minimal model's 
onstru
tion in the proof of Theorem 1.1.2 implies that there is

another generator u of degree two su
h that ρ(u) = 1
2
x45 and du = yz1. Sin
e

ρ(yu) = 1
2
x456 is 
losed and non-exa
t, there are no further generators of degree

less than or equal to two in V . Using the notation of Theorem 1.1.5, we have

u ∈ N2, y ∈ V 1
, (u+ c) y is 
losed and not exa
t for ea
h c ∈ C2

and (
∧
V, d) is

not formal.

Finally, the existen
e of a symple
ti
 form on G/Γ follows from Proposition

3.8.3.1. �

Theorem 3.8.3.4.

(i) The 
ompletely solvable Lie group G := G6.78 possesses a latti
e.

(ii) For ea
h latti
e the 
orresponding quotient is a symple
ti
 and formal mani-

fold with b1 = b2 = 1.

Proof. ad (i): By de�nition, we have G = R ⋉µ N with N = G5.3 and

µ(t) = expN ◦ expA(n)(t ad(X6)|n) ◦ logN , where {X1, . . . , X6} denotes a basis of
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g as in the se
ond row of Table A.20. Note that {X1, . . . , X5} is a basis for the

nilradi
al n. One 
omputes

µ(t)∗ := de

(
µ(t)

)
= expA(n)(t ad(X6)|n) =




et 0 0 0 0
0 1 0 0 0
0 0 e−t −te−t 0
0 0 0 e−t 0
0 0 0 0 et



. (3.12)

Using

n = 〈X5〉⋉ad(X5)

(
〈X1〉 ⊕ 〈X2, X3, X4 | [X2, X4] = X3〉

)

with ad(X5)(X2) = −X1, ad(X5)(X4) = −X2, ad(X5)(X1) = ad(X5)(X3) = 0
and

〈X2, X3, X4 | [X2, X4] = X3〉 ∼= g3.1,

we 
an determine the Lie group N .

As a smooth manifold N equals R5
, and the multipli
ation is given by

(a, b, c, r, s) · (x, y, z, v, w)

= (a+ x+ bw +
rw2

2
, b+ y + rw , c+ z + bv +

r2w

2
+ rvw , r + v , s+ w).

Now, Theorem 3.3.2 enables us to 
ompute the exponential map of N as

expN(xX1 + yX2 + zX3 + vX4 + wX5)

=
(
x+

yw

2
+
vw2

6
, y +

vw

2
, z +

yv

2
+
v2w

3
, v , w

)
,

and therefore, we also obtain the logarithm of N

logN
(
(x, y, z, v, w)

)

= (x− yw

2
+
vw2

12
)X1 + (y − vw

2
)X2 + (z − yv

2
− v2w

12
)X3 + vX4 + wX5.

Finally, a short 
omputation shows that (3.12) implies

µ(t)
(
(x, y, z, v, w)

)
= (etx, y, e−t(z − tw), e−tv, etw).

Let t1 := ln(3+
√
5

2
), b0 := − 2t1

1+
√
5
and 
onsider for t ∈ R the automorphisms

I(t) : N → N given by

I(t)
(
(x, y, z, v, w)

)

= (0, tb0, 0, 0, 0)(x, y, z, v, w)(0, tb0, 0, 0, 0)
−1 = (x+ tb0w, y, z + tb0v, v, w),
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and ν(t) := µ(t) ◦ I(t) : N → N . It is easy to see that ν : R → A(N) is a

one-parameter group in N .

We shall show that there exists a latti
e ΓN in N preserved by ν(t1), and this

then implies the existen
e of a latti
e in G6.78, namely t1Z ⋉ν ΓN .

For the remainder of the proof, we identify n ≡ R5
with respe
t to the basis

{X1, . . . , X5} of n. Under this identi�
ation, 
onsider the basis {Y1, . . . , Y5} of

n, Yi being the i-th 
olumn of T = (Tij) ∈ GL(5,R), where T has the following

entries:

T11 =
10(161 + 72

√
5) ln(3+

√
5

2
)2

1165 + 521
√
5

,

T12 = 0,

T13 =
5(2 +

√
5)(161 + 72

√
5) ln(3+

√
5

2
)2

1525 + 682
√
5

,

T14 =
328380 + 146856

√
5− (159975 + 71543

√
5) ln(3+

√
5

2
)2

202950 + 90762
√
5

,

T15 = 1,

T21 = 0,

T22 = −(5 + 3
√
5) ln(3+

√
5

2
)

3 +
√
5

,

T23 = 0,

T24 = −(158114965 + 70711162
√
5) ln(3+

√
5

2
)

141422324 + 63245986
√
5

,

T25 =
5(3940598 + 1762585

√
5) ln(3+

√
5

2
)

17622890 + 7881196
√
5

,

T31 =
1

2
(5 +

√
5) ln(

3 +
√
5

2
),

T32 = 0,

T33 = T22,

T34 = 1,

T35 = −597 + 267
√
5 + (3808 + 1703

√
5) ln(3+

√
5

2
)

369 + 165
√
5

,

T41 = 0,

T42 = 0,

T43 = 0,

T44 = 1,
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T45 = −2(2 +
√
5)

3 +
√
5
,

T51 = 0,

T52 = 0,

T53 = 0,

T54 = ln(
2

3 +
√
5
),

T55 = −2 ln(3+
√
5

2
)

1 +
√
5
.

Let γi := expN(Yi) for i ∈ {1, . . . 5} and

S1 =
92880525355200 + 41537433696024

√
5

57403321562460 + 25671545829588
√
5

− (3591421616495 + 1606132574069
√
5) ln(3+

√
5

2
)2

57403321562460 + 25671545829588
√
5

,

S2 = −(228826127 + 102334155
√
5) ln(3+

√
5

2
)

141422324 + 63245986
√
5

,

S3 = 1− (757189543 + 338625458
√
5) ln(3+

√
5

2
)

848533944 + 379475916
√
5

,

S4 =
724734510 + 324111126

√
5− (325041375 + 145362922

√
5) ln(3+

√
5

2
)2

724734510 + 324111126
√
5

,

S5 =
(120789085 + 54018521

√
5) ln(3+

√
5

2
)

74651760 + 33385282
√
5

,

S6 = − 466724522940 + 208725552012
√
5

24(12018817440 + 5374978561
√
5)

+
(3393446021605 + 1517595196457

√
5) ln(3+

√
5

2
)

24(12018817440 + 5374978561
√
5)

.

One 
omputes γ1 = (T11, 0, T31, 0, 0), γ2 = (0, T22, 0, 0, 0), γ3 = (T13, 0, T33, 0, 0),
γ4 = (S1, S2, S3, T44, T54) and γ5 = (S4, S5, S6, T45, T55).

Moreover, if A denotes the matrix




1 0 1 13
6

11
6

0 1 0 0 −1
2

1 0 2 −5
6

−1
3

0 0 0 2 1
0 0 0 1 1



, we 
an 
al
ulate

TAT−1 = ν(t1)∗ := de(ν(t)). Sin
e ν(t1) = expN ◦ν(t1)∗ ◦ logN , this yields

ν(t1)(γ1) = γ1 γ3, ν(t1)(γ2) = γ2, ν(t1)(γ3) = γ1 γ
2
3 , ν(t1)(γ4) = γ21 γ

−2
2 γ24 γ5 and

ν(t1)(γ5) = γ21 γ
−1
2 γ4 γ5.
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Therefore, we have shown that ν(t1) preserves the subgroup ΓN of N whi
h is

generated by γ1, . . . , γ5. In order to 
omplete the proof of (i), it su�
es to show

that ΓN is a latti
e in N .

Sin
e n is 3-step nilpotent, the Baker-Campbell-Hausdor� formula (see e.g.

[76, Chapter 2.15℄) yields for all V,W ∈ n

logN
(
expN(V ) expN(W )

)
= V +W +

1

2
[V,W ] +

1

12
([[V,W ],W ]− [[V,W ], V ]).

Therefore, we obtain by a short 
al
ulation [Y2, Y4] = Y3, [Y2, Y5] = Y1 and

[Y4, Y5] =
1
2
Y1 + Y2 +

1
2
Y3, i.e. the basis {Y1, . . . , Y5} has rational stru
ture 
on-

stants. Theorem 3.1.1 then implies that ΓN is a latti
e in N .

ad (ii): Let Γ be a latti
e in G := G6.78. By 
ompletely solvability and

Theorem 3.2.11 (ii), the minimal model of M = G/Γ is the same as the minimal

modelM of the Chevalley-Eilenberg 
omplex (
∧

g∗, δ). In view of Theorem 1.1.6,

it su�
es to prove that the latter is 2-formal. On the non-
losed generators of

(
∧

g∗, δ) the di�erential is given by

δx1 = x16 − x25, δx2 = −x45, δx3 = −x24 − x36 − x46, δx4 = −x46, δx5 = x56,

i.e. H1(
∧

g∗, δ) = 〈[x6]〉. Further, one 
al
ulates H2(
∧
g∗, δ) = 〈[x14+x26+x35]〉.

The minimal model ρ : (
∧
V, d) → (

∧
g∗, δ) then must 
ontain two 
losed gener-

ators y, z whi
h map to x6 and x14+x26+x35. Sin
e ρ(yz) = x146+x356 is 
losed
and non-exa
t, there are no other generators of degree two in (

∧
V, d), hen
e

up to degree two, all generators are 
losed. This implies the minimal model's

2-formality.

Moreover, x14 + x26 + x35 de�nes a symple
ti
 form. �

Remark. In order to determine a latti
e in G6.78, the author also found a latti
e

of the 
ompletely solvable Lie group G−1
6.76. One 
an show that the 
orresponding

solvmanifold is formal and has �rst Betti number equal to one. Unfortunately, it

is not symple
ti
 by Proposition 3.8.3.1.

Remark. Besides the mentioned groups above, the following non-
ompletely

solvable Lie groups G6.i 
ould give rise to a symple
ti
 solvmanifold G6.i/Γ with

b1(G6.i/Γ) = 1:

i = 8; i = 9, b 6= 0; i = 10, a 6= 0;
i = 11; i = 12; i = 32, a = ε = 0 < h;
i = 37, a = 0; i = 88, µ0ν0 6= 0; i = 89, ν0s 6= 0;
i = 90, ν0 6= 0; i = 92, µ0ν0 6= 0; i = 92∗;
i = 93, |ν0| > 1

2
.

(3.13)

But then the 
ohomology 
lass of the symple
ti
 form 
annot lie in the image of

the in
lusion H∗(
∧
g∗6.i, δ) →֒ H∗(G6.i/Γ, d) by Proposition 3.8.3.1.
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3.8.4 Symple
ti
 solvmanifolds whose �rst Betti number is

greater than one

In this se
tion, we examine whi
h Lie groups G 
an give rise to a six-dimensional

solvmanifold G/Γ with b1(G/Γ) > 1. Again, we just 
onsider inde
omposable


onne
ted and simply-
onne
ted solvable Lie groups. The nilradi
al of su
h a

group has not dimension equal to three, see e.g. [58℄. Proposition 3.2.5 then

tells us that inde
omposable solvable Lie groups have nilradi
als of dimension

greater than three. Moreover, the nilpotent ones were 
onsidered in Se
tion

3.8.1, hen
e we 
an assume that G is non-nilpotent, i.e. dimNil(G) ∈ {4, 5}. The

orresponding Lie algebras are listed in Tables A.10 � A.26.

In Se
tion 3.8.2, we have ex
luded some groups G sin
e they 
annot admit

latti
es. Clearly, we omit them in the 
onsiderations below.

By Theorem 3.2.11(ii), we have in the 
ompletely solvable 
ase an isomor-

phism from Lie algebra 
ohomology to the solvmanifold's 
ohomology, i.e. the

Lie algebra g must satisfy b1(g) > 1, too. In the last se
tion, we saw that g06.38
is the only non-
ompletely solvable but 
ohomologi
ally symple
ti
 Lie algebra

with b1(g) = 1. Therefore, for ea
h latti
e Γ in G0
6.38 with b1(G

0
6.38/Γ) > 1, the

quotient is symple
ti
. We now turn to Lie algebras with b1(g) > 1. The possible
values of b1 
an be read of in Tables A.27 � A.29.

The remaining algebras to examine are g6.i with

i = 2, a = 0; i = 3, d = −1; i = 6, a = −1
2
, b = 0;

i = 9, b = 0; i = 10, a = 0; i = 21, a = 0;
i = 23, a = 0; i = 25, b = 0; i = 26;
i = 29, b = 0; i = 33, a = 0; i = 34, a = 0;
i = 36, a = 0; i = 54, l = −1; i = 63;
i = 65, l = 0; i = 70, p = 0; i = 83, l = 0;
i = 84; i = 88, µ0 = ν0 = 0; i = 89, ν0s = 0;
i = 90, ν0 = 0; i = 92, ν0µ0 = 0; i = 93, ν0 = 0;
i = 102; i = 105; i = 107;
i = 113; i = 114; i = 115;
i = 116; i = 118; i = 120;
i = 125; i = 129; i = 135.

(3.14)

As above, we just 
onsider su
h Lie algebras that are 
ohomologi
ally symple
ti
,

although this 
ondition is only in the 
ompletely solvable 
ase ne
essary for the

existen
e of a symple
ti
 form on G/Γ.

Proposition 3.8.4.1. Let g6.i be one of the Lie algebras listed in (3.14).

Then g6.i is 
ohomologi
ally symple
ti
 if and only if it is 
ontained in the
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following list:

b1 = 2 : i = 3, d = −1; i = 10, a = 0; i = 21, a = 0;
i = 36, a = 0; i = 54, l = −1;
i = 70, p = 0; i = 118, b = ±1.

b1 = 3 : i = 23, a = 0, ε 6= 0; i = 29, b = 0.

Proof. This is done by a 
ase by 
ase analysis as des
ribed in the proof of

Proposition 3.8.3.1. We list the symple
ti
 forms for the Lie algebras that are


ohomologi
ally symple
ti
. In the 
ases with b1 = 2, the symple
ti
 forms are

given by

i = 3, d = −1 : ω = λ x16 + µ x23 + ν x45, λµν 6= 0,
i = 10, a = 0 : ω = λ x16 + µ x23 + ν x45, λµν 6= 0,
i = 21, a = 0 : ω = λ x12 + µ x36 + ν x45, λµν 6= 0,
i = 36, a = 0 : ω = λ x12 + µ x36 + ν x45, λµν 6= 0,
i = 54, l = −1 : ω = λ (x12 + x23) + µ x34 + ν x56, λν 6= 0,
i = 70, p = 0 : ω = λ (x13 + x24) + µ x34 + ν x56, λν 6= 0,
i = 118, b = ±1: ω = λ (x13 ± x24) + µ (x14 − x23) + ν x56, (λ2 + µ2)ν 6= 0.

In the 
ases with b1 = 3, we have the symple
ti
 forms

ω = λ (x12 + ε x35) + µ (x16 + x24) + ν (x23 − ε x56) + ρ x25 + σ x46

with λµν 6= 0 for i = 23, a = 0, ε 6= 0,

ω = λ (x13 + ε x45) + µ (x16 + x24) + ν (x23 − ε x56) + ρ x26 + σ x34

with λ 6= 0, ρ 6= (λ+ε)µν
λ

for i = 29, b = 0, ε 6= 0 and

ω = λ x12 + µ x13 + ν (x16 + x24) + ρ x26 + σ x34 + τ x56

with ν(νσ + µτ) 6= 0 for i = 29, b = 0, ε 6= 0. �

Provided there is a latti
e in one of the ten Lie groups G6.i in the last propo-

sition whose Lie algebras are 
ohomologi
ally symple
ti
, we 
an ensure that the


orresponding solvmanifold is symple
ti
. In the 
ompletely solvable 
ase, i.e.

i ∈ {3, 21, 23, 29, 54}, we 
an determine 
ohomologi
al properties of the potential

solvmanifolds.

Proposition 3.8.4.2.

(i) There is a latti
e in the 
ompletely solvable Lie group G0,−1
6.3 .

(ii) For ea
h latti
e the 
orresponding solvmanifold is symple
ti
, not formal

and satis�es b1 = 2 as well as b2 = 3.
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Proof. ad (i) : By de�nition, we have G := G0,−1
6.3 = R⋉µN with N = R5

and

µ(t) = expGL(5,R)(t ad(X6)|n), where X6 ∈ g
0,−1
6.3 is 
hosen as in Table A.11, i.e.

µ(t) =




1 −t t2

2
0 0

0 1 −t 0 0
0 0 1 0 0
0 0 0 e−t 0
0 0 0 0 et



.

Set t1 := ln(3+
√
5

2
). Then µ(t1) is 
onjugate to




1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 1 3



. This follows

from (3.4) and the fa
t that the Jordan form of the upper left blo
k of µ(t1) is


1 1 0
0 1 1
0 0 1



. Hen
e G admits a latti
e.

ad (ii): By 
ompletely solvability and Theorem 3.2.11 (ii), the solvmanifold's

minimal model is the same as the minimal model of the Chevalley-Eilenberg


omplex (
∧
(x1, . . . , x6), δ). In view of Theorem 1.1.6, it su�
es to prove that the

latter is not 2-formal.

Using the knowledge of the Chevalley-Eilenberg 
omplex, one 
an 
ompute

ρ : (
∧
(y1, . . . , y4, z), d) → (

∧
(x1, . . . , x6), δ) as the minimal model up to genera-

tors of degree two, where

ρ(y1) = x3, ρ(y2) = x6, ρ(y3) = −x2, ρ(y4) = −x1, ρ(z) = x4x5,

dy1 = dy2 = 0, dy3 = y1y2, dy4 = y2y3, dz = 0.

This obviously implies the statement about the Betti numbers. Moreover, using

the notation of Theorem 1.1.5, we have C1 = 〈y1, y2〉, N1 = 〈y3, y4〉, and y1 (y3+c)
is 
losed but not exa
t for ea
h c ∈ C1

. Hen
e the minimal model is not 1-
formal. �

Proposition 3.8.4.3.

(i) There is a latti
e in the 
ompletely solvable Lie group G0
6.21.

(ii) For ea
h latti
e the 
orresponding solvmanifold is symple
ti
, not formal

and satis�es b1 = 2 as well as b2 = 3.

Proof. The proof of (ii) is 
ompletely analogous to that of (ii) in the last

proposition. But this time, the minimal model is given by

ρ(y1) = x2, ρ(y2) = x6, ρ(y3) = −x3, ρ(y4) = x1, ρ(z) = x4x5,

dy1 = dy2 = 0, dy3 = y1y2, dy4 = y1y3, dz = 0,

and y1 (y4 + c) is 
losed but non-exa
t for ea
h 
losed c of degree one.
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ad (i): In order to prove the existen
e of a latti
e, we use the same argumen-

tation as in the proof of Theorem 3.8.3.2 (i). (Note that G−1
6.15 and G := G0

6.21

share their nilradi
al N .) But of 
ourse, we now have a di�erent initial data:

G = R⋉µ N with µ(t) = expN ◦ expA(n)(t




0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0
0 0 0 −1 0
0 0 0 0 1



) ◦ logN and

µ(t)
(
(y, z, v, w)

)
= expGL(4,R)(t




0 0 0 0
−t 0 0 0
0 0 −t 0
0 0 0 t


)




y
z
v
w




=




1 0 0 0
−t 1 0 0
0 0 e−t 0
0 0 0 et







y
z
v
w


 .

Arguing analogous as in (3.10), one obtains

µ(t)
(
(x, y, z, v, w)

)
=
(
x− t

2
y2, µ(t)

(
(y, z, v, w)

))
.

Let t1 = ln(3+
√
5

2
), A :=




1 1 0 0
0 1 0 0
0 0 0 −1
0 0 1 3


 and T =




0 − 1
t1

0 0

1 0 0 0

0 0 18+8
√
5

7+3
√
5

1

0 0 2
3+

√
5

1


.

Then we have TAT−1 = µ(t1). Denote the i-th 
olumn of T by bi. Analogous 
al-

ulations as in lo
. 
it. imply the existen
e of a latti
e generated by γ0 := ( 1

t1
, 0R4)

and γi := (bi0, bi), i ∈ {1, . . . , 4}, where b20 ∈ R arbitrary and b10 = − 1
2t1

as well

as b30 = b40 = 0. �

Proposition 3.8.4.4.

(i) Let ε = ±1. There is a latti
e in the 
ompletely solvable Lie group G0,0,ε
6.23 .

(ii) If there is a latti
e in G0,0,ε
6.23 , ε 6= 0, then the 
orresponding solvmanifold is

symple
ti
, non-formal and satis�es b1 = 3 as well as b2 = 5.

Proof. ad (i): G0,0,ε
6.23 has the same nilradi
al N as G−1

6.15 and the latter is

des
ribed at the beginning of the proof of Theorem 3.8.3.2.

By de�nition, G0,0,ε
6.23 = R⋉µ N with

µ(t) = expN ◦ expA(n)(t




0 0 0 0 −ε
0 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 0



) ◦ logN .
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The fun
tions expN , logN also 
an be found in the proof of Theorem 3.8.3.2. Using

their knowledge, we 
al
ulate

µ(t)
(
(x, y, z, v, w)

)
=
(
x− t

2
y2 − tε , y , z − ty ,

t2

2
y − tz + v , w

)
.

If ε = ±1, then the map µ(2) preserves the latti
e

{(x, y, z, v, w) ∈ N | x, y, z, v, w ∈ Z} ⊂ N.

Therefore, G0,0,ε
6.23 admits a latti
e.

ad (ii): By 
ompletely solvability, the Betti numbers of the Chevalley-Eilen-

berg 
omplex 
oin
ide with the solvmanifold's Betti numbers. A short 
al
ulation

yields the �rst Betti numbers of the former as b1 = 3 and b2 = 5.
The knowledge of the Chevalley-Eilenberg 
omplex (

∧
(x1, . . . , x6), δ) enables

us to 
ompute the �rst stage of the minimal model as above. It is given by

ρ : (
∧
(y1, . . . , y6), d) → (

∧
(x1, . . . , x6), δ) with

ρ(y1) = x2, ρ(y2) = x5, ρ(y3) = x6, ρ(y4) = −x3, ρ(x5) = x1, ρ(y6) = −x4,
dy1 = dy2 = dy3 = 0, dy4 = y1y3, dy5 = y1y4 − ε y2y3, dy6 = y3y4.

Sin
e y3 (y6 + c) is 
losed and non-exa
t for ea
h 
losed c of degree one, the

minimal model is not 1-formal. �

Proposition 3.8.4.5.

(i) Let ε ∈ {0,±1}. There is a latti
e in the 
ompletely solvable Lie group

G0,0,ε
6.29 .

(ii) If there is a latti
e in G0,0,ε
6.29 , ε ∈ R, then the 
orresponding solvmanifold is

symple
ti
, non-formal and has b1 = 3 as well as b2 =

{
5, if ε 6= 0
6, if ε = 0

}
.

Proof. The argumentation is analogous to the last proof, but this time we

have

µ(t)
(
(x, y, z, v, w)

)
=
(
x− ε

6
t3z +

ε

2
t2v − εtw , y , z , −tz + v ,

1

2
t2z − tv + w

)
.

(Note that there is no misprint. The maps expN ◦ expA(n)(t ad(X6)) ◦ logN and

expA(n)(t ad(X6)) have the same form.) For ε ∈ {0,±1}, µ(6) preserves the integer
latti
e mentioned in the last proof. This implies (i).

In order to prove (ii), we 
onsider the minimal model. Up to generators of

degree one, it is given by

ρ(y1) = x2, ρ(y2) = x3, ρ(y3) = x6, ρ(y4) = −x4, ρ(x5) = −x5, ρ(y6) = −x1,
dy1 = dy2 = dy3 = 0, dy4 = y2y3, dy5 = y3y4, dy6 = y1y2 + ε y3y5,
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if ε 6= 0, and

ρ(y1) = x2, ρ(y2) = x3, ρ(y3) = x6, ρ(y4) = −x1, ρ(x5) = −x4, ρ(y6) = −x5,
dy1 = dy2 = dy3 = 0, dy4 = y1y2, dy5 = y2y3, dy6 = y3y5,

if ε = 0. In both 
ases y2 (y4+ c) is 
losed and non-exa
t for all 
losed c of degree
one. �

The following result is due to Fernández, de Léon and Saralegui. Its proof 
an

be found in [26, Se
tion 3℄. Note that the 
ohomologi
al results are independent

of the 
hoi
e of the latti
e, sin
e the Lie group in the proposition is 
ompletely

solvable.

Proposition 3.8.4.6. The 
ompletely solvable Lie group G0,−1
6.54 admits a latti
e.

For ea
h su
h, the 
orresponding solvmanifold is symple
ti
, non-formal and sat-

is�es b1 = 2 as well as b2 = 5. �

Summing up the results 
on
erning 
ompletely solvable Lie groups that admit

symple
ti
 quotients, we obtain:

Theorem 3.8.4.7. All six-dimensional symple
ti
 solvmanifolds that 
an be writ-

ten as quotient of a non-nilpotent 
ompletely solvable inde
omposable Lie group

are 
ontained in one of the last �ve propositions, Theorem 3.8.3.2 or Theorem

3.8.3.4. �

To end this se
tion, we 
onsider the four 
ohomologi
ally symple
ti
 Lie al-

gebras g6.i of Proposition 3.8.4.1 that are not 
ompletely solvable, this means

i = 10 ∧ a = 0, i = 36 ∧ a = 0, i = 70 ∧ p = 0 or i = 118 ∧ b = ±1. Clearly, the
existen
e of a latti
e implies that the 
orresponding solvmanifold is symple
ti
.

But in order to make a statement about 
ohomologi
al properties, one needs an

assumption about the �rst two Betti numbers to ensure the knowledge of the


ohomology algebra.

Proposition 3.8.4.8.

(i) Ea
h quotient of the Lie group G := G0,0
6.10 by a latti
e is symple
ti
 and G

admits a latti
e Γ with b1(G/Γ) = 2.

(ii) If there is a latti
e in G su
h that the 
orresponding solvmanifold satis�es

b1 = 2 and b2 = 3, then it is symple
ti
 and not formal.

Proof. We have G = R⋉µ N with N = R5
, µ(t) = expGL(5,R)(t ad(X6)|n) and

X6 ∈ g
0,0
6.10 
hosen as in Table A.11, i.e.

µ(t) =




1 −t t2

2
0 0

0 1 −t 0 0
0 0 1 0 0
0 0 0 cos(t) − sin(t)
0 0 0 sin(t) cos(t)



.
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µ(π) is 
onjugate to




1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 −1



. This follows from the fa
t that the

Jordan form of the upper left blo
k of µ(π) is




1 1 0
0 1 1
0 0 1



. Hen
e G admits a

latti
e Γ.
A short 
al
ulation yields that the abelianisation of this latti
e is isomorphi


to Z2 ⊕ Z2
2
, i.e. b1(G/Γ) = 2.

Using the assumptions of (ii), one 
al
ulates the minimal model up to gener-

ators of degree one as

ρ(y1) = x3, ρ(y2) = x6, ρ(y3) = −x2, ρ(y4) = −x1,
dy1 = dy2 = 0, dy3 = y1y2, dy4 = y2y3,

and y1 (y3 + c) is 
losed but not exa
t for ea
h 
losed c of degree one. �

Proposition 3.8.4.9.

(i) Ea
h quotient of the Lie group G := G0,0
6.36 by a latti
e is symple
ti
 and G

admits a latti
e Γ with b1(G/Γ) = 2.

(ii) If there is a latti
e in the Lie group G su
h that the 
orresponding solvmani-

fold satis�es b1 = 2 and b2 = 3, then it is symple
ti
 and not formal.

Proof. The proof of (ii) is analogous to the last one. Up to generators of

degree one, the minimal model is given by

ρ(y1) = x2, ρ(y2) = x6, ρ(y3) = −x3, ρ(y4) = x1,

dy1 = dy2 = 0, dy3 = y1y2, dy4 = y1y3,

and y1 (y4 + c) is 
losed but not exa
t for ea
h 
losed c of degree one.
ad (i): Using another initial data, we argue as in the proof of Proposition

3.8.4.3. We now have µ(t)
(
(x, y, z, v, w)

)
=
(
x− t

2
y2, µ(t)

(
(y, z, v, w)

))
with

µ(t)
(
(y, z, v, w)

)
= expGL(4,R)(t




0 0 0 0
−t 0 0 0
0 0 0 t
0 0 −t 0


)




y
z
v
w




=




1 0 0 0
−t 1 0 0
0 0 cos(t) sin(t)
0 0 − sin(t) cos(t)







y
z
v
w


 .
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Let t1 = π, A :=




1 1 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 and T :=




0 − 1
t1

0 0

1 0 0 0
0 0 1 0
0 0 0 1


. Then we

have TAT−1 = µ(t1). Denote the i-th 
olumn of T by bi. Analogous 
al
ulations
as in lo
. 
it. lead to a latti
e generated by γ0 := ( 1

t1
, 0R4) and γi := (bi0, bi) for

i ∈ {1, . . . , 4}, where b20 ∈ R arbitrary and b10 = − 1
2t1
, b30 = b40 = 0.

Obviously, this latti
e is represented by

〈τ, γ0, . . . , γ4 | [τ, γ1] = 1, [τ, γ2] = γ1, [τ, γ3] = γ−2
3 , [τ, γ4] = γ−2

4 , [γ1, γ2] = γ0〉

and its abelianisation is Z2⊕Z2
2
, i.e. the solvmanifold's �rst Betti number equals

two. �

Proposition 3.8.4.10.

(i) Ea
h quotient of the Lie group G := G0,0
6.70 by a latti
e is symple
ti
 and G

admits a latti
e Γ with b1(G/Γ) = 2.

(ii) If there is a latti
e Γ in G su
h that b1(G/Γ) = 2 and b2(G/Γ) = 3, then
G/Γ is formal.

Proof. ad (i): By de�nition, we have G = R ⋉µ N with N = G5.1 and

µ(t) = expN ◦ expA(n)(t ad(X6)|n) ◦ logN , where {X1, . . . , X6} denotes a basis of

g as in the se
ond row of Table A.18. Note that {X1, . . . , X5} is a basis of the

nilradi
al n. One 
omputes

µ(t)∗ := de(µ(t)) = expA(n)(t ad(X6))

=




cos(t) sin(t) 0 0 0
− sin(t) cos(t) 0 0 0

0 0 cos(t) sin(t) 0
0 0 − sin(t) cos(t) 0
0 0 0 0 1



.

Using n = 〈X5〉 ⋉ad(X5) 〈X1, . . . , X4 | 〉 and ad(X5)(X1) = ad(X5)(X2) = 0,
ad(X5)(X3) = −X1, ad(X5)(X4) = −X2, we 
an determine the Lie group N .

As a smooth manifold N equals R5
, and the multipli
ation is given by

(a, b, c, r, s) · (x, y, z, v, w) =
(
a + x+ cw , b+ y + rw , c + z , r + v , s+ w

)
.

By Theorem 3.3.2, we 
an obtain the exponential map of N as

expN(xX1 + yX2 + zX3 + vX4 + wX5) = (x+
zw

2
, y +

vw

2
, z , v , w),

and obviously, this implies

logN
(
(x, y, z, v, w)

)
= (x− wz

2
)X1 + (y − vw

2
)X2 + zX3 + vX4 + wX5.
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From µ(t) = expN ◦µ(t)∗ ◦ logN we get

µ(t)
(
(x, y, z, v, w)

)
= (cos(t) x+ sin(t) y , − sin(t) x+ cos(t) y ,

cos(t) z + sin(t) v , − sin(t) z + cos(t) v , w)

and µ(π) preserves the latti
e {(x, y, z, v, w) ∈ N | x, y, z, v, w ∈ Z}.
The 
orresponding solvmanifold has b1 = 2 sin
e the abelianisation of this

latti
e is isomorphi
 to Z2 ⊕ Z2
4
.

ad (ii): Up to generators of degree two, the minimal model is given by

ρ(y1) = x5, ρ(y2) = x6, ρ(z1) = x13 + x24, ρ(z2) = x34,

dy1 = dy2 = 0, dz1 = dz2 = 0,

hen
e it is 2-formal. By Theorem 1.1.6, the solvmanifold is formal. �

Proposition 3.8.4.11.

(i) G := G0,±1,−1
6.118 admits a latti
e su
h that the �rst Betti number of the 
orre-

sponding solvmanifold equals two (and the se
ond Betti number equals �ve).

(ii) If there is a latti
e Γ in G su
h that b1(G/Γ) = 2 and b2(G/Γ) = 3, then
G/Γ is symple
ti
 and formal.

Proof. The 
onstru
tion of the latti
es mentioned in (i) 
an be found in [79℄.

In lo
. 
it. G0,1,−1
6.118 is denoted by G3 and G

0,−1,−1
6.118 by G1, respe
tively. The Betti

numbers of the quotient of G0,−1,−1
118 are determined expli
itly. In the 
ase of

G0,1,−1
118 , one 
an make an analogous 
omputation.

Assume there is a latti
e that satis�es the 
ondition of (ii). Up to generators

of degree two, the solvmanifold's minimal model is given by

ρ(y1) = x5, ρ(y2) = x6, ρ(z1) = x13 ± x24, ρ(z2) = x14 ∓ x23,

dy1 = dy2 = 0, dz1 = dz2 = 0,

hen
e it is 2-formal. Theorem 1.1.6 then implies formality. �

Remark. G0,−1,−1
6.118 is the underlying real Lie group of the unique 
onne
ted and

simply-
onne
ted 
omplex three-dimensional Lie group that is solvable and not

nilpotent. Its 
ompa
t quotients by latti
es are 
lassi�ed in [59, Theorem 1℄.

They always satisfy b1 = 2 and moreover, for the Hodge number h0,1 holds either
h0,1 = 1 or h0,1 = 3.

Remark. Besides the groups mentioned in this se
tion, the following solvable

but not 
ompletely solvable Lie groups G6.i 
ould give rise to a symple
ti
 solv-

manifold with b1 > 1. But then the 
ohomology 
lass of the symple
ti
 form


annot lie in the image of the in
lusion H∗(
∧

g∗6.i, δ) →֒ H∗(G6.i/Γ, d).
There are the sixteen 
lasses of groups in (3.13) and

i = 9, b = 0; i = 33, a = 0; i = 34, a = 0;
i = 35, a = −b; i = 89, s = 0, ν0 6= 0; i = 92, ν0µ0 = 0;
i ∈ {107, 113, . . . , 116, 125, 135}.
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3.8.5 De
omposable solvmanifolds

The six-dimensional de
omposable solvmanifolds G/Γ = H1/Γ1 × H2/Γ2 being

not a nilmanifold are 
ontained in Table 3.5 on page 89. Using Theorem 3.2.11,

one 
an dedu
e the statement about the Betti numbers. The results on the

existen
e of a symple
ti
 form were mostly made by Campoamor-Stursberg in

[10℄. He examined whether the Lie algebra admits a symple
ti
 form. Note that

in [10℄ the symple
ti
 forms

λ x12 + µ x15 + ν x26 + ρ x34 + σ x56, ρ 6= 0, λσ 6= µν,

on g05.14 ⊕ g1 are absent.

Sin
e there is a monomorphism from the Lie algebra 
ohomology to the solv-

manifold's 
ohomology, the existen
e of a symple
ti
 form with non-exa
t 
ubi


on the Lie algebra implies the existen
e of su
h an on the solvmanifold. Re
all

that the Lie algebra is generated by the left-invariant one-forms on the Lie group.

If the Lie algebra 
ohomology is isomorphi
 to the solvmanifold's 
ohomology

12

,

one knows whether the solvmanifold is symple
ti
 or not. Up to exa
t summands

the symple
ti
 forms are listed in Table 3.6 with respe
t to the dual of the Lie

algebra's bases given in Appendix A. In the 
olumn �isom.�, we mark whether

there is an isomorphism of the 
ohomology algebras.

We do not 
laim that Table 3.5 
ontains all 
onne
ted and simply-
onne
ted

de
omposable solvable and non-nilpotent Lie groups whi
h admit a latti
e � just

those Lie groups admitting a latti
e su
h that the 
orresponding solvmanifold is

a produ
t of lower-dimensional ones.

3.9 Relations with the Lefs
hetz property

We have seen in Chapter 2 that a 
ompa
t Kähler manifold is formal, Hard

Lefs
hetz and its odd-degree Betti numbers are even. Even if a manifold has

a 
omplex stru
ture, these 
onditions are not su�
ient as the following theorem

whi
h is mentioned in [41℄ shows. Re
all, we have seen above that G1,−1,−1
5.7 admits

a latti
e.

Theorem 3.9.1. Let Γ be an arbitrary latti
e in G1,−1,−1
5.7 . Then the solvmanifold

M := G1,−1,−1
5.7 /Γ × S1

is formal, Hard Lefs
hetz and has even odd-degree Betti

numbers. Moreover, M possesses a 
omplex stru
ture but it 
annot be Kählerian.

Proof. From Proposition 3.7.2.1 follows that the Lie group G := G1,−1,−1
5.7 ×R

possesses a latti
e Γ. The Chevalley-Eilenberg 
omplex of its Lie algebra

〈X1, . . . , X6 | [X1, X5] = X1, [X2, X5] = X2, [X3, X5] = −X3, [X4, X5] = −X4 〉
12

E.g. this happens if the Lie algebra is 
ompletely solvable or if the above monomorphism

must be an isomorphism by dimension reasons.
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Table 3.5: De
omposable non-nil-solvmanifolds G/Γ = H1/Γ1 ×H2/Γ2

G b1(G/Γ) b2(G/Γ) formal sympl. Comment

Gp,q,r
5.7 × R 2 1 yes no −1 < r < q < p < 1,

pqr 6= 0,
p+ q + r = −1

Gp,−p,−1
5.7 × R 2 3 yes yes p ∈]0, 1[

G1,−1,−1
5.7 × R 2 5 yes yes

G−1
5.8 × R 3 5 no yes

G−1−2q,q,r
5.13 × R ≥ 2 ≥ 1 ? ? q ∈ [−1, 0[,

q 6= −1
2
, r 6= 0

G−1,0,r
5.13 × R ≥ 2 ≥ 3 ? yes r 6= 0
G0

5.14 × R ≥ 3 ≥ 5 ? yes

G−1
5.15 × R 2 3 no yes

Gp,−p,r
5.17 × R ≥ 2 ≥ 1 ? ? p 6= 0, r 6∈ {0,±1},

Gp,−p,r
5.17 × R ≥ 2 ≥ 3 ? yes (p 6= 0, r = ±1)

or (p = 0, r 6∈ {0,±1})
G0,0,±1

5.17 × R ≥ 2 ≥ 5 ? yes

G0
5.18 × R ≥ 2 ≥ 3 ? yes

G−1
5.20 × R 3 3 yes no

G0,±1
5.26 × R ≥ 3 ≥ 3 ? ?

G−1,−1
5.33 × R 3 3 yes no

G−2,0
5.35 × R ≥ 3 ≥ 3 ? ?

Gp,−p−1
4.5 × R2 3 3 yes no p ∈ [−1

2
, 0[

G−2p,p
4.6 × R2 3 3 yes no p > 0
G−1

4.8 × R2 3 3 yes no

G0
4.9 × R2 3 3 yes no

G−1
3.4 × R3 4 7 yes yes

G0
3.5 × R3 4 7 yes yes

G3.1 ×G−1
3.4 3 5 no yes

G3.1 ×G0
3.5 3 5 no yes

G−1
3.4 ×G−1

3.4 2 3 yes yes

G−1
3.4 ×G0

3.5 2 3 yes yes

G0
3.5 ×G0

3.5 2 3 yes yes
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Table 3.6: Symple
ti
 forms on G/Γ = H1/Γ1 ×H2/Γ2

g symple
ti
 forms isom.

g
p,−p,−1
5.7 ⊕ g1 a x14 + b x23 + c x56, abc 6= 0 yes

g
1,−1,−1
5.7 ⊕ g1 a x13 + b x14 + c x23 + d x24 + e x56, e(bc− ad) 6= 0 yes

g−1
5.8 ⊕ g1 a x12 + b x15 + c x26 + d x34 + e x56, d(ae− bc) 6= 0 yes

g
−1,0,r
5.13 ⊕ g1 a x12 + b x34 + c x56, abc 6= 0 ?

g05.14 ⊕ g1 a x12 + b x15 + c x26 + d x34 + e x56, d(ae− bc) 6= 0 ?

g−1
5.15 ⊕ g1 a (x14 − x23) + b x24 + c x56, abc 6= 0 yes

g
p,−p,±1
5.17 ⊕ g1 a (x13 ± x24) + b (x14 ∓ x23) + c x56, abc 6= 0 ?

p 6= 0

g
0,0,r
5.17 ⊕ g1 a x12 + b x34 + c x56, abc 6= 0 ?

r 6= ±1

g
0,0,±1
5.17 ⊕ g1 a x12 + b (x13 ± x24) + c (x14 ∓ x23) + d x34 + e x56, ?

e(ad ∓ (b2 + c2)) 6= 0
g05.18 ⊕ g1 a (x13 + x24) + b x24 + c x56, ac 6= 0 ?

g−1
3.4 ⊕ 3g1 a x12 + b x34 + c x35 + d x36 + e x45 + f x46 + g x56, yes

a(de− cf + bg) 6= 0
g03.5 ⊕ 3g1 a x12 + b x34 + c x35 + d x36 + e x45 + f x46 + g x56, yes

a(de− cf + bg) 6= 0
g3.1 ⊕ g−1

3.4 a x12 + b x13 + c x26 + d x36 + e x45, e(ad− bc) 6= 0 yes

g3.1 ⊕ g03.5 a x12 + b x13 + c x26 + d x36 + e x45, e(ad− bc) 6= 0 yes

g−1
3.4 ⊕ g−1

3.4 a x12 + b x36 + c x45, abc 6= 0 yes

g−1
3.4 ⊕ g03.5 a x12 + b x36 + c x45, abc 6= 0 yes

g03.5 ⊕ g03.5 a x12 + b x36 + c x45, abc 6= 0 yes
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is given by

δx1 = −x15, δx2 = −x25, δx3 = x35, δx4 = x45, δx5 = δx6 = 0,

where {x1, . . . , x6} is a basis of the left-invariant one-forms on G. Sin
e G is


ompletely solvable, Theorem 3.2.11 (ii) enables us to 
ompute the 
ohomology

of M as

H1(M,R) ∼= 〈[x5], [x6]〉,
H2(M,R) ∼= 〈[x13], [x14], [x23], [x24], [x56]〉,
H3(M,R) ∼= 〈[x135], [x136], [x145], [x146], [x235], [x236], [x245], [x246]〉, (3.15)
H4(M,R) ∼= 〈[x1234], [x1356], [x1456], [x2356], [x2456]〉,
H5(M,R) ∼= 〈[x12345], [x12346]〉.

Let [ω] ∈ H2(M,R) represent a symple
ti
 form onM . A short 
al
ulation shows

that there are a, b, c, d, e ∈ R with e(bc− ad) 6= 0 and

[ω] = a[x13] + b[x14] + c[x23] + d[x24] + e[x56].

Sin
e [x5] ∪ [ω]2 = 2(bc − de)[x12345] 6= 0 and [x6] ∪ [ω]2 = 2(bc− de)[x12346] 6= 0,
the homomorphism L2 : H1(M,R) → H5(M,R) is an isomorphism.

In the basis (3.15), the homomorphism L1 : H2(M,R) → H4(M,R) is rep-

resented by the matrix




−d c −b −a 0
e 0 0 0 a
0 e 0 0 b
0 0 e 0 c
0 0 0 e d




whi
h has 2e3(ad − bc) 6= 0 as

determinant, hen
e M is Hard Lefs
hetz.

We de�ne an almost 
omplex stru
ture J on G by

JX1 = X2, JX2 = −X1, JX3 = X4, JX4 = −X3, JX5 = X6, JX6 = −X5,

whi
h indu
es an almost 
omplex stru
ture on M . It is easy to see that the

Nijenhuis tensor vanishes, hen
e M is a 
omplex manifold.

M is a non-toral solvmanifold whi
h is a quotient of a 
ompletely solvable Lie

group. Therefore, M 
annot be Kählerian by Theorem 3.2.13. �

The authors of [47℄ 
onsidered the relations between the above three properties

for 
losed symple
ti
 manifolds. We want to try to 
omplete [47, Theorem 3.1

Table 1℄ in the 
ase of symple
ti
 solvmanifolds. A
tually, the mentioned table

deals with symple
ti
ally aspheri
al 
losed manifolds, but note that symple
ti


solvmanifolds are symple
ti
ally aspheri
al.

We start our investigations by the examination of the Lefs
hetz property in

dimension four.
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Theorem 3.9.2. A four-dimensional symple
ti
 solvmanifold is not (Hard) Lef-

s
hetz if and only if it is a non-toral nilmanifold. Espe
ially, the (Hard) Lefs
hetz

property is independent of the 
hoi
e of the symple
ti
 form.

Proof. By Theorem 3.6.2, there are �ve 
lasses of four-dimensional symple
ti


solvmanifolds. Three of them are nilmanifolds and satisfy the 
laim by Corollary

3.1.10.

There remain two non-nilmanifolds to 
onsider. We start with a quotient

M of the Lie group whi
h has g−1
3.1 ⊕ g1 as Lie algebra, see Table A.1. The Lie

group is 
ompletely solvable, hen
e the Lie algebra 
ohomology is isomorphi
 to

the solvmanifold's 
ohomology. If x1, . . . , x4 denote the left-invariant one-forms

whi
h are dual to the basis given in Table A.1, one 
omputes

H1(M,R) ∼= 〈[x3], [x4]〉,
H2(M,R) ∼= 〈[x12], [x34]〉, (3.16)

H3(M,R) ∼= 〈[x123], [x124]〉.

The 
lass representing a symple
ti
 form must be of the form [a x12 + b x34] with
a, b 6= 0 and obviously, the Lefs
hetz map with respe
t to this 
lass is an isomor-

phism.

Now, 
onsider a solvmanifold G/Γ su
h that the Lie algebra of G is g03.5 ⊕ g1
and b1(G/Γ) = 2. A short 
omputation yields that the Lie algebra 
ohomology

of g3.5 ⊕ g1 is the same as in (3.16). Sin
e G/Γ is 
ompa
t and parallelisable,

we see further bi(G/Γ) = 2 for i ∈ {1, 2, 3}, and Theorem 3.2.11 (i) implies that

(3.16) also gives the 
ohomology of G/Γ. We have yet seen that a symple
ti


four-manifold with this 
ohomology is Hard Lefs
hetz. �

Denote KT �the� four-dimensional symple
ti
 nilmanifold with b1(KT ) = 3.
We have seen that KT is not formal and not Lefs
hetz. Its square has the

following properties:

Theorem 3.9.3 ([47℄). KT × KT is not formal, not Lefs
hetz and has even

odd-degree Betti numbers. �

Next, we are looking for an example of a formal manifold that is not Lefs
hetz

and has even odd degree Betti numbers resp. an odd odd degree Betti number.

Theorem 3.9.4. The Lie group G6.78 admits a latti
e Γ, see above. M := G6.78/Γ
is a formal solvmanifold with b1(M) = 1 that admits a symple
ti
 form ω su
h that

(M,ω) is not Hard Lefs
hetz. Moreover, (M ×M,ω × ω) is a formal symple
ti


manifold with even odd degree Betti numbers that is not Hard Lefs
hetz.

Proof. By Theorem 3.8.3.4, M is a formal symple
ti
 manifold with Betti

numbers b1(M) = b2(M) = 1. Note that this implies that M ×M is symple
ti


and formal (the latter property by Proposition 1.1.7).



3.9. RELATIONS WITH THE LEFSCHETZ PROPERTY 93

Corollary 2.1.4 for
es M to be not Lefs
hetz and sin
e [27, Proposition 4.2℄

says that a produ
t is Lefs
hetz if and only if both fa
tors are Lefs
hetz, M ×M
is not Lefs
hetz.

M is a six-dimensional solvmanifold and so it is parallelisable. Hen
e the fa
t

b0(M) = b1(M) = b2(M) = 1 implies b3(M) = 2. This and Poin
aré Duality

imply b1(M × M) = b11(M × M) = 2, b3(M × M) = b9(M × M) = 6 and

b5(M ×M) = b7(M ×M) = 4. �

In 1990, Benson and Gordon [4, Example 3℄ 
onstru
ted an eight-dimensional

non-exa
t symple
ti
 and 
ompletely solvable Lie algebra that does not satisfy

the Hard Lefs
hetz property, but they did not know whether the 
orresponding


onne
ted and simply-
onne
ted Lie group GBG
admits a latti
e.

Fernández, de León and Saralegui 
omputed in [26, Proposition 3.2℄ the min-

imal model of the 
omplex of the left-invariant di�erential forms on GBG
. It is

formal and its 
ohomology of odd degree is even-dimensional. If GBG
admits

a latti
e, by 
ompletely solvability, the 
orresponding solvmanifold would be a

symple
ti
 and formal manifold with even odd degree Betti numbers that violates

the Hard Lefs
hetz property.

In 2000, Tralle [74℄ 
laimed that a latti
e does not exist but Sawai and Yamada

noted 2005 Tralle's proof would 
ontain 
al
ulatory errors and 
onstru
ted a

latti
e [69, Theorem 1℄. This proves the next theorem.

Theorem 3.9.5. There exists an eight-dimensional symple
ti
 and formal solv-

manifold MBG
with even odd degree Betti numbers that is not Hard Lefs
hetz. �

We sum up the above results in Table 3.7. It is an enlargement of [47, Theorem

3.1 Table 1℄.

Table 3.7: Relations of the Kähler properties

Formality Hard Lefs
hetz b2i+1 ≡ 0(2) Example

yes yes yes Kähler

yes yes no impossible

yes no yes MBG
, G6.78/Γ×G6.78/Γ

yes no no G6.78/Γ
no yes yes ?

no yes no impossible

no no yes KT ×KT
no no no KT

Unfortunately, the missing example does not arise among the six-dimensional

solvmanifolds that possess the same 
ohomology as the 
orresponding Lie algebra.

In order to see this, one has to examine whi
h of them satisfy the (Hard) Lefs
hetz

property. We brie�y mention the results.
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By Corollary 2.1.4, a manifold with odd �rst Betti number 
annot be Lef-

s
hetz. We now examine su
h inde
omposable solvmanifolds whose �rst Betti

number is even; in the 
ompletely solvable 
ase, these are quotients of G−1
6.3, G

0
6.21

and G−1
6.54.

The proof of the next two propositions is done analogous as that of Theorem

3.9.1. By 
omplete solvability, we know the solvmanifolds' 
ohomology and all

possible symple
ti
 forms were determined in the proof of Proposition 3.8.4.1.

Therefore, one 
an 
ompute the image of the Lefs
hetz maps.

Proposition 3.9.6. Let a latti
e in G−1
6.3 or G

0
6.21 be given. (Wee have seen above

that su
h exists.) Then the 
orresponding (non-formal) symple
ti
 solvmanifold

(with b1 = 2, b2 = 3) is not Lefs
hetz, independent of the 
hoi
e of the symple
ti

form. �

Proposition 3.9.7. Let a latti
e in G−1
6.54 be given. (Su
h exists by Proposition

3.8.4.6.) The 
orresponding (non-formal) symple
ti
 solvmanifold (with b1 = 2,
b2 = 5) is Lefs
hetz but not Hard Lefs
hetz, independent of the 
hoi
e of the

symple
ti
 form. �

Remark. The existen
e of a latti
e in G−1
6.54 was proven by Fernández, de Léon

and Saralegui in [26℄. They also 
omputed the Betti numbers of the 
orresponding

solvmanifold, showed that it is not formal and does not satisfy the Hard Lefs
hetz

property with respe
t to a 
ertain symple
ti
 form. Moreover, Fernández and

Muñoz proved in [27, Example 3℄ that the manifold is Lefs
hetz. (Analogous


al
ulations work for other symple
ti
 forms.)

In the non-
ompletely solvable 
ase, the situation be
omes a little more 
om-

pli
ated. If we are willing to make a statement about the Lefs
hetz property,

we have to know the 
ohomology and need therefore assumptions on the Betti

numbers.

Proposition 3.9.8. If there is a latti
e in one of the non-
ompletely solvable

groups G0,0
6.i , i ∈ {10, 36, 70} resp. G0,±1,−1

6.118 su
h that the 
ohomology of the 
or-

responding solvmanifold Mi is isomorphi
 to the Lie algebra 
ohomology of g6.i
(i.e. the 
ohomology is as small as possible), then one 
omputes that the following

hold, independent of the 
hoi
e of the symple
ti
 forms provided by Proposition

3.8.4.1:

• M10 and M36 are not formal and not Lefs
hetz.

• M70 is formal and Lefs
hetz but not Hard Lefs
hetz.

• M118 is formal and Hard Lefs
hetz.

(The statements on formality follow from the propositions at the end of Se
tion

3.8.4.) �
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Finally, we 
onsider the de
omposable symple
ti
 solvmanifolds listed in Table

3.5.

Proposition 3.9.9. Let G/Γ = H1/Γ1 × H2/Γ2 be one of the symple
ti
 solv-

manifolds listed in Table 3.5 su
h that in the 
orresponding row of the table arises

no ≥-sign.
Then G/Γ is formal if and only if it is Hard Lefs
hetz (independent of the

spe
ial 
hoi
e of the symple
ti
 form).

Sket
h of the proof. One has an isomorphism from the Lie algebra 
ohomology

to the solvmanifold's 
ohomology for ea
h manifold as in the theorem. Then an

expli
it 
al
ulation as in the proof of Theorem 3.9.1 yields that the Hard Lefs
hetz

manifolds among the 
onsidered are exa
tly the formal ones.

Note, if b1 is not even, the 
laim follows dire
tly from Theorem 2.1.3. �

Remark. G−1
5.15/Γ1×S1

is Lefs
hetz. The other manifolds in the last proposition

are even not Lefs
hetz if they are not Hard Lefs
hetz.

G−1
5.15/Γ1 × S1

is a Lefs
hetz manifold that is not formal and has even odd

degree Betti numbers.

A similar result as the last proposition holds for the manifolds in Table 3.5

su
h that in the 
orresponding row of the table arises a ≥-sign. But we again

must make an assumption that enables us to 
ompute the whole 
ohomology.

Proposition 3.9.10.

(i) Let M = G5.i/Γ × R/Z be a symple
ti
 manifold su
h that one of the fol-

lowing 
onditions holds:

a) i = 13 with q = 0 and b1(M) = 2 as well as b2(M) = 3,

b) i = 17 with p 6= 0, r = ±1 and b1(M) = 2 as well as b2(M) = 3,


) i = 17 with p = 0, r 6∈ {0,±1} and b1(M) = 2 as well as b2(M) = 3,

d) i = 17 with p = 0, r = ±1 and b1(M) = 2 as well as b2(M) = 5.

Then M is formal and Hard Lefs
hetz (independent of the spe
ial 
hoi
e of

the symple
ti
 form).

(ii) Let Γ be a latti
e in G0
5.14 su
h that M = G0

5.14/Γ×R/Z satis�es b1(M) = 3
and b2(M) = 5.

Then M is not formal and not Lefs
hetz (independent of the spe
ial 
hoi
e

of the symple
ti
 form).

(iii) Let Γ be a latti
e in G0
5.18 su
h that M = G0

5.18/Γ×R/Z satis�es b1(M) = 2
and b2(M) = 3.

Then M is not formal and Lefs
hetz but not Hard Lefs
hetz (independent

of the spe
ial 
hoi
e of the symple
ti
 form). �
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Chapter 4

Rational Homotopy and Minimal

Models

In general, it is very di�
ult to 
al
ulate the homotopy groups πk(X) of a given

topologi
al spa
e X . However, if one is willing to forget the torsion, with 
ertain

assumptions on X, the rational homotopy groups πk(X)⊗Q 
an be determined

by the theory of minimal models.

4.1 PL forms

In order to relate minimal models to rational homotopy theory, we need a di�er-

ential graded algebra over Q to repla
e the de Rahm algebra.

Let ∆n
be a standard simplex in Rn+1

and (ΩPL(∆
n), d) the restri
tion to

∆n
of all di�erential forms in Rn+1

whi
h 
an be written as

∑
Pi1...ikdxi1 . . .dxik ,

where Pi1...ik ∈ Q[x1, . . . , xn+1] together with multipli
ation and di�erential in-

du
ed by Rn+1
.

Let X = {(σi)i∈I} be a path-
onne
ted simpli
ial 
omplex. Set for k ∈ Z

Ωk
PL(X) := {(αi)i∈I |αi ∈ Ωk

PL(σi) ∧ (σi ⊂ ∂σj ⇒ αj |σi
= αi)},

and ΩPL(X) :=
⊕

k∈Z Ω
k
PL(X). It 
an be veri�ed that the set ΩPL(X) of so-
alled

PL forms is a di�erential graded algebra over Q if we use the multipli
ation and

the di�erential on forms 
omponentwise.

Analogous to the usual result for the de Rham 
omplex, we have:

Theorem 4.1.1 ([63, Theorem 1.1.4℄). If X is a path-
onne
ted simpli
ial 
om-

plex, then there is an isomorphism H∗(ΩPL(X), d) ∼= H∗(X,Q). �

For su
h a simpli
ial 
omplex X , we de�ne the (Q-)minimal model MX,Q of

X to be the minimal model of (ΩPL(X), d). Its relation to the minimal model of

a smooth manifold (see Chapter 1) is given by the following theorem.

Theorem 4.1.2 ([63, Theorem 1.3.9℄). Let M be a 
onne
ted smooth manifold.

Then there is an isomorphism MM,Q ⊗ R ∼= MM . �

97
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4.2 Nilpotent spa
es

Already in is paper [72℄, Sullivan shows that for nilpotent spa
es, there is a


orresponden
e between the minimal model and the rational homotopy. To state

this result, we need the notion of a nilpotent spa
e resp. nilpotent module.

Let G be a group, H be a G-module, Γ0
GH := H and

Γi+1
G H := 〈g.h− h | g ∈ G ∧ h ∈ Γi

GH〉 ⊂ Γi
GH

for i ∈ N.
Then, H is 
alled a nilpotent module if there is n0 ∈ N su
h that Γn0

G H = {1}.
We re
all the natural π1-module stru
ture of the higher homotopy groups

πn of a topologi
al spa
e. For instan
e, let (X, x0) be a pointed spa
e with

universal 
over (X̃, x̃0). It is well known that π1(X, x0) ∼= D(X̃), the group

of de
k transformations of the universal 
overing. Now, be
ause X̃ is simply-


onne
ted, every free homotopy 
lass of self-maps of X̃ determines uniquely a


lass of basepoint preserving self-maps of X̃ (see e.g. [43, Proposition 4.A.2℄).

This means that to every homotopy 
lass of de
k transformations 
orresponds a

homotopy 
lass of basepoint preserving self-maps (whi
h are, in fa
t, homotopy

equivalen
es) (X̃, x̃0) → (X̃, x̃0). These maps provide indu
ed automorphisms

of homotopy groups πn(X̃, x̃0) ∼= πn(X, x0) (n > 1) and this whole pro
ess then

provides an a
tion of π1(X, x0) on πn(X, x0).

De�nition 4.2.1. A path-
onne
ted topologi
al spa
e X whose universal 
ov-

ering exists is 
alled nilpotent if for x0 ∈ X the fundamental group π1(X, x0)
is a nilpotent group and the higher homotopy groups πn(X, x0) are nilpotent

π1(X, x0)-modules for all n ∈ N, n ≥ 2. Note, the de�nition is independent of

the 
hoi
e of the base point.

Example.

(i) Simply-
onne
ted spa
es are nilpotent.

(ii) S1
is nilpotent.

(iii) The 
artesian produ
t of two nilpotent spa
es is nilpotent. Therefore, all

tori are nilpotent.

(iv) The Klein bottle is not nilpotent.

(v) P n(R) is nilpotent if and only if n ≡ 1(2).

Proof. (i) - (iv) are obvious and (v) 
an be found in Hilton's book [46℄ on

page 165. �

The main theorem on the rational homotopy of nilpotent spa
es is the follow-

ing.
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Theorem 4.2.2. Let X be a path-
onne
ted nilpotent CW-
omplex with �nitely

generated homotopy groups. If MX,Q =
∧
V denotes the minimal model, then

for all k ∈ N with k ≥ 2 holds:

HomZ(πk(X),Q) ∼= V k

Using another approa
h to minimal models (via lo
alisation of spa
es and

Postnikow towers), this theorem is proved for example in [50℄. The proof that

we shall give here is new to the author's knowledge. We will show the following

more general result mentioned (but not proved) by Halperin in [37℄.

Theorem 4.2.3. Let X be a path-
onne
ted triangulable topologi
al spa
e whose

universal 
overing exists. Denote by MX,Q =
∧
V the minimal model and assume

that

(i) ea
h πk(X) is a �nitely generated nilpotent π1(X)-module for k ≥ 2 and

(ii) the Q-minimal model for K(π1(X), 1) has no generators in degrees greater

than one.

Then for ea
h k ≥ 2 there is an isomorphism HomZ(πk(X),Q) ∼= V k
.

Remark. The homotopy groups of a 
ompa
t nilpotent smooth manifold are

�nitely generated:

By [46, Satz 7.22℄, a nilpotent spa
e has �nitely generated homotopy if and

only if it has �nitely generated homology with Z-
oe�
ients. The latter is satis-

�ed for 
ompa
t spa
es. �

The main tool for the proof of the above theorems is a 
onsequen
e of the

fundamental theorem of Halperin [37℄. In the next se
tion, we quote it and use

it to prove Theorems 4.2.2 and 4.2.3.

4.3 The Halperin-Grivel-Thomas theorem

To state the theorem, let us re
all a basi
 
onstru
tion for �brations.

Let π : E → B be a �bration with path-
onne
ted basis B. Therefore, all

�bers Fb = π−1({b}) are homotopy equivalent to a �xed �ber F sin
e ea
h path γ
in B lifts to a homotopy equivalen
e Lγ : Fγ(0) → Fγ(1) between the �bers over the

endpoints of γ. In parti
ular, restri
ting the paths to loops at a basepoint of B we

obtain homotopy equivalen
es Lγ : F → F for F the �bre over the basepoint b0.
One 
an show that this indu
es a natural π1(B, b0)-module stru
ture onH∗(F,Q).

Theorem 4.3.1 ([63, Theorem 1.4.4℄). Let F,E,B be path-
onne
ted triangulable

topologi
al spa
es and F → E → B a �bration su
h that Hn(F,Q) is a nilpotent

π1(B, b0)-module for n ∈ N+. The �bration indu
es a sequen
e

(ΩPL(B), dB) −→ (ΩPL(E), dE) −→ (ΩPL(F ), dF )



100 CHAPTER 4. RATIONAL HOMOTOPY AND MINIMAL MODELS

of di�erential graded algebras. Suppose that H∗(F,Q) or H∗(B,Q) is of �nite

type.

Then there is a quasi-isomorphism Ψ: (MB,Q ⊗MF,Q , D) → (ΩPL(E), dE)
making the following diagram 
ommutative:

(ΩPL(B), dB) ✲ (ΩPL(E), dE) ✲ (ΩPL(F ), dF )

(MB,Q , DB)

ρB

✻

⊂ ✲ (MB,Q ⊗MF,Q , D)

Ψ

✻

✲ (MF,Q , DF )

ρF

✻

Furthermore, the left and the right verti
al arrows are the minimal models. More-

over, if MF,Q =
∧
VF , there is an ordered basis {vFi | i ∈ I} of VF su
h that for

all i, j ∈ I holds D(vFi ) ∈ MB,Q ⊗ (MF,Q)<vFi
and (vFi < vFj ⇒ |vFi | ≤ |vFj |). �

Remark. In general, (MB,Q ⊗ MF,Q , D) is not a minimal di�erential graded

algebra and D|MF,Q
6= DF is possible.

We need some further preparations for the proofs of the above theorems. The

�rst is a reformulation of the results 3.8− 3.10 in [46℄. It justi�es the statement

of the next theorem.

Proposition 4.3.2. Let G be a �nitely generated nilpotent group. Then the set

T (G) of torsion elements of G is a �nite normal subgroup of G and G/T (G) is
�nitely generated. �

Theorem 4.3.3. Let G be a �nite generated nilpotent group and denote by T (G)
its �nite normal torsion group.

Then K(G, 1) and K(G/T (G), 1) share their minimal model.

Proof. Sin
e T (G) is �nite and Q is a �eld, we get from [22, Se
tion 4.2℄

Hn(K(T (G), 1)),Q) = {0} for n ∈ N+. The 
onstru
tion of the minimal model

in the proof of Theorem 1.1.2 implies that MK(T (G),1),Q has no generators of

degree greater than zero. Now, the theorem follows from the pre
eding one,

applied to the �bration K(T (G), 1) → K(G, 1) → K(G/T (G), 1). �

Lemma 4.3.4. Let X be topologi
al spa
e with universal 
overing p : X̃ → X.

Then, up to weak homotopy equivalen
e of the total spa
e, there is a �bration

X̃ → X → K := K(π1(X), 1). Moreover, for a 
lass [γ] ∈ π1(K) ∼= π1(X) the

homotopy equivalen
es L[γ] : X̃ → X̃ des
ribed at the beginning of this se
tion are

given by the 
orresponding de
k transformations of p.

Proof. Denote by π : E → K(π1(X), 1) the universal prin
ipal π1(X)-bundle.

Regard on E × X̃ the diagonal π1(X)-a
tion. Then, the �bre bundle

X̃ −→
(
(E × X̃)/π1(X)

)
−→ K

has the desired properties. �
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Proof of Theorem 4.2.3:

Let X be as in the statement of the theorem. For simply-
onne
ted spa
es, the

theorem was proven in [23, Theorem 15.11℄. Now, the idea is to use this result

and to 
onsider the universal 
over p : X̃ → X . Denote by MX̃,Q =
∧
Ṽ and

MX,Q =
∧
V the minimal models. We shall show

∀k≥2 V
k ∼= Ṽ k. (4.1)

This and the truth of the theorem for simply-
onne
ted spa
es implies then the

general 
ase

∀k≥2 V
k ∼= Ṽ k ∼= HomZ(πk(X̃),Q) = HomZ(πk(X),Q).

It remains to show (4.1): Sin
e X is triangulable, X and X̃ 
an be seen as

CW-
omplexes. Therefore, up to weak homotopy, there is the following �bration

of CW-
omplexes

X̃ −→ X
π−→ K(π1(X), 1) =: K.

We prove below:

H∗(X̃,Q) is of �nite type. (4.2)

H∗(X̃,Q) is a nilpotent π1(X)-module. (4.3)

Then Theorem 4.3.1 implies the existen
e of a quasi-isomorphism ρ su
h that the

following diagram 
ommutes:

(ΩPL(K), dK) ✲ (ΩPL(X), dX) ✲ (ΩPL(X̃), dX̃)

(MK,Q , DK)

ρK

✻

⊂ ✲ (MK,Q ⊗MX̃,Q , D)

ρ

✻

✲ (MX̃,Q , DX̃)

ρX̃

✻

Finally, we shall see

(MK,Q ⊗MX̃,Q , D) is a minimal di�erential graded algebra (4.4)

and this implies (4.1) sin
e MK has no generators of degree greater than one by

assumption (ii).

We still have to prove (4.2) - (4.4):

By assumption (i), πk(X) = πk(X̃) is �nitely generated for k ≥ 2. Sin
e

simply-
onne
ted spa
es are nilpotent, [46, Satz 7.22℄ implies the �nite generation

of H∗(X̃,Z) and (4.2) follows.

(4.3) is the statement of Theorem 2.1 (i) ⇒ (ii) in [45℄ � applied to the a
tion

of π1(X) on πi(X̃).



102 CHAPTER 4. RATIONAL HOMOTOPY AND MINIMAL MODELS

ad (4.4): By assumption (ii), MK has no generators in degrees greater than

one, i.e. MK,Q =
∧{vi | i ∈ I} with |vi| = 1. The 
onstru
tion of the minimal

model in the proof of Theorem 1.1.2 implies that the minimal model of a simply-


onne
ted spa
e has no generators in degree one, i.e. MX̃,Q =
∧{wj | j ∈ J} with

|wj| > 1. We expand the well orderings of I and J to a well ordering of their

union by ∀i∈I ∀j ∈ J i < j. Theorem 4.3.1 implies that D(wj) 
ontains only
generators whi
h are ordered before wj . Trivially, D(vi) also has this property,

so we have shown (4.4) and the theorem is proved. �

Proof of Theorem 4.2.2:

Let X be a path-
onne
ted nilpotent CW-
omplex with �nitely generated fun-

damental group and �nitely generated homotopy. By Theorem 4.2.3, we have to

show that the minimal model of K(π1(X), 1) has no generators in degrees greater

than one. Theorem 4.3.3 implies that it su�
es to show that K(π1(X)/T, 1) has
this property, where T denotes the torsion group of π1(X). Γ := π1(X)/T is

a �nitely generated nilpotent group without torsion. By [66, Theorem 2.18℄, Γ

an be embedded as a latti
e in a 
onne
ted and simply-
onne
ted nilpotent Lie

group G. Therefore, the nilmanifold G/Γ is a K(Γ, 1) and from Theorem 3.2.11

follows that its minimal model has no generators in degrees greater than one. �



Appendix A

Lists of Lie Algebras

In Table A.1, we give the isomorphism 
lasses of Lie algebras of the simply-


onne
ted solvable Lie groups up to dimension four that possesses latti
es. The

designation gi,j means the j-th inde
omposable solvable Lie algebra of dimension

i. The 
hoi
e of the integer j bases on the notation of [56℄. The supers
ripts,

if any, give the values of the 
ontinuous parameters on whi
h the algebra de-

pends. (We do not 
laim that the 
orresponding Lie groups admit a latti
e for

all parameters. We just know that there exist su
h for 
ertain parameters!)

Table A.1: Solvmanifolds up to dimension four

[Xi, Xj] 
pl. solv.

g1 abelian

2g1 abelian

3g1 abelian

g3.1 [X2, X3] = X1 nilpotent

g−1
3.4 [X1, X3] = X1, [X2, X3] = −X2 yes

g03.5 [X1, X3] = −X2, [X2, X3] = X1 no

4g1 abelian

g3.1 ⊕ g1 [X2, X3] = X1 nilpotent

g−1
3.4 ⊕ g1 [X1, X3] = X1, [X2, X3] = −X2 yes

g03.5 ⊕ g1 [X1, X3] = −X2, [X2, X3] = X1 no

g4.1 [X2, X4] = X1, [X3, X4] = X2 nilpotent

g
p,−p−1
4.5 [X1, X4] = X1, [X2, X4] = pX2, yes

[X3, X4] = (−p− 1)X3, − 1
2
≤ p < 0

g
−2p,p
4.6 [X1, X4] = −2pX1, [X2, X4] = pX2 −X3, no

[X3, X4] = X2 + pX3, p > 0
g−1
4.8 [X2, X3] = X1, [X2, X4] = X2, [X3, X4] = −X3 yes

g04.9 [X2, X3] = X1, [X2, X4] = −X3, [X3, X4] = X2 no

103
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The set of non-isomorphi
 �ve dimensional nilpotent Lie algebras is exhausted by

three types of de
omposable algebras and six inde
omposables whi
h are listed

in Table A.2. The designation is taken from [57℄.

Table A.2: 5-dimensional nilpotent algebras

[Xi, Xj]

5g1 abelian

g3.1 ⊕ 2g1 [X2, X3] = X1

g4.1 ⊕ g1 [X2, X4] = X1, [X3, X4] = X2

g5.1 [X3, X5] = X1, [X4, X5] = X2

g5.2 [X2, X5] = X1, [X3, X5] = X2, [X4, X5] = X3

g5.3 [X2, X4] = X3, [X2, X5] = X1, [X4, X5] = X2

g5.4 [X2, X4] = X1, [X3, X5] = X1

g5.5 [X3, X4] = X1, [X2, X5] = X1, [X3, X5] = X2

g5.6 [X3, X4] = X1, [X2, X5] = X1, [X3, X5] = X2, [X4, X5] = X3

There are 24 
lasses of solvable and non-nilpotent de
omposable Lie algebras in

dimension �ve. The unimodular among them are the ones in Table A.3.

Table A.3: 5-dimensional de
omposable unimodular non-nilpotent algebras

[Xi, Xj] 
pl. solv.

g−1
3.4 ⊕ 2g1 [X1, X3] = X1, [X2, X3] = −X2 yes

g03.5 ⊕ 2g1 [X1, X3] = −X2, [X2, X3] = X1 no

g−2
4.2 ⊕ g1 [X1, X4] = −2X1, [X2, X4] = X2, yes

[X3, X4] = X2 +X3

g
p,−p−1
4.5 ⊕ g1 [X1, X4] = X1, [X2, X4] = pX2, yes

[X3, X4] = (−p− 1)X3, − 1
2
≤ p < 0

g
−2p,p
4.6 ⊕ g1 [X1, X4] = −2pX1, [X2, X4] = pX2 −X3, no

[X3, X4] = X2 + pX3, p > 0
g−1
4.8 ⊕ g1 [X2, X3] = X1, [X2, X4] = X2, [X3, X4] = −X3 yes

g04.9 ⊕ g1 [X2, X3] = X1, [X2, X4] = −X3, [X3, X4] = X2 no

Ex
ept for g4.2 ⊕ g1, to ea
h 
lass of algebras there is a 
onne
ted and simply-


onne
ted solvable Lie group admitting a latti
e and has a Lie algebra belonging

to the 
lass.

Mubarakzjanov's list in [57℄ 
ontains 33 
lasses of �ve-dimensional inde
ompos-

able non-nilpotent solvable Lie algebras, namely g5.7, . . . , g5.39. We list the uni-

modular among them in Tables A.4 to A.7.

Note that there is a minor misprint in [57℄ whi
h has been 
orre
ted in the list

below.
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Table A.4: 5-dimensional inde
omposable unimodular almost abelian algebras

[Xi, Xj] 
pl. solv.

g
p,q,r
5.7 [X1, X5] = X1, [X2, X5] = pX2, yes

[X3, X5] = qX3, [X4, X5] = rX4,
−1 ≤ r ≤ q ≤ p ≤ 1, pqr 6= 0, p + q + r = −1

g−1
5.8 [X2, X5] = X1, [X3, X5] = X3, [X4, X5] = −X4, yes

g
p,−2−p
5.9 [X1, X5] = X1, [X2, X5] = X1 +X2, [X3, X5] = pX3, yes

[X4, X5] = (−2− p)X4, p ≥ −1
g−3
5.11 [X1, X5] = X1, [X2, X5] = X1 +X2, yes

[X3, X5] = X2 +X3, [X4, X5] = −3X4,

g
−1−2q,q,r
5.13 [X1, X5] = X1, [X2, X5] = (−1 − 2q)X2, no

[X3, X5] = qX3 − rX4, [X4, X5] = rX3 + qX4,
−1 ≤ q ≤ 0, q 6= −1

2
, r 6= 0

g05.14 [X2, X5] = X1, [X3, X5] = −X4, [X4, X5] = X3 no

g−1
5.15 [X1, X5] = X1, [X2, X5] = X1 +X2, yes

[X3, X5] = −X3, [X4, X5] = X3 −X4

g
−1,q
5.16 [X1, X5] = X1, [X2, X5] = X1 +X2, no

[X3, X5] = −X3 − qX4, [X4, X5] = qX3 −X4,
q 6= 0

g
p,−p,r
5.17 [X1, X5] = pX1 −X2, [X2, X5] = X1 + pX2, no

[X3, X5] = −pX3 − rX4, [X4, X5] = rX3 − pX4,
r 6= 0

g05.18 [X1, X5] = −X2, [X2, X5] = X1, no

[X3, X5] = X1 −X4, [X4, X5] = X2 +X3

Table A.5: 5-dimensional inde
omposable unimodular algebras with nilradi
al

g3.1 ⊕ g1

[Xi, Xj] 
pl. solv.

g
p,−2p−2
5.19 [X2, X3] = X1, [X1, X5] = (1 + p)X1, [X2, X5] = X2, yes

[X3, X5] = pX3, [X4, X5] = (−2p− 2)X4, p 6= −1
g−1
5.20 [X2, X3] = X1, [X2, X5] = X2, [X3, X5] = −X3, yes

[X4, X5] = X1

g−4
5.23 [X2, X3] = X1, [X1, X5] = 2X1, [X2, X5] = X2 +X3, yes

[X3, X5] = X3, [X4, X5] = −4X4

g
p,4p
5.25 [X2, X3] = X1, [X1, X5] = 2pX1, [X2, X5] = pX2 +X3, no

[X3, X5] = −X2 + pX3, [X4, X5] = −4pX4, p 6= 0

g
0,ε
5.26 [X2, X3] = X1, [X2, X5] = X3, [X3, X5] = −X2, no

[X4, X5] = εX1, ε = ±1

g
− 3

2

5.28 [X2, X3] = X1, [X1, X5] = −1
2
X1, [X2, X5] = −3

2
X2, yes

[X3, X5] = X3 +X4, [X4, X5] = X4
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Table A.6: 5-dimensional inde
omposable unimodular algebras with nilradi
al

g4.1

[Xi, Xj] 
pl. solv.

g
− 4

3

5.30 [X2, X4] = X1, [X3, X4] = X2, [X1, X5] =
2
3
X1, yes

[X2, X5] = −1
3
X2, [X3, X5] = −4

3
X3, [X4, X5] = X4

Table A.7: 5-dimensional inde
omposable unimodular algebras with nilradi
al

3g1
[Xi, Xj] 
pl. solv.

g
−1,−1
5.33 [X1, X4] = X1, [X3, X4] = −X3, yes

[X2, X5] = X2, [X3, X5] = −X3

g
−2,0
5.35 [X1, X4] = −2X1, [X2, X4] = X2, [X3, X4] = X3, no

[X2, X5] = −X3, [X3, X5] = X2

There are ten 
lasses of de
omposable nilpotent Lie algebras in dimension six:

6g1, g3.1 ⊕ 3g1, 2g3.1, g4.1 ⊕ 2g1 and g5.i ⊕ g1 for i ∈ {1, . . . 6}.
Tables A.8 and A.9 
ontain the six-dimensional inde
omposable nilpotent real Lie

algebras. They base on Morozov's 
lassi�
ation in [54℄, where nilpotent algebras

over a �eld of 
hara
teristi
 zero are determined. Note that over R, there is only
one isomorphism 
lass of Morozov's inde
omposable type 5 resp. type 10 and

type 14 resp. 18 splits into two non-isomorphi
 ones.

Table A.8: 6-dimensional inde
omposable nilpotent algebras

[Xi, Xj]

g6.N1 [X1, X2] = X3, [X1, X3] = X4, [X1, X5] = X6

g6.N2 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5, [X1, X5] = X6

g6.N3 [X1, X2] = X6, [X1, X3] = X4, [X2, X3] = X5

g6.N4 [X1, X2] = X5, [X1, X3] = X6, [X2, X4] = X6

g6.N5 [X1, X3] = X5, [X1, X4] = X6, [X2, X3] = −X6, [X2, X4] = X5

g6.N6 [X1, X2] = X6, [X1, X3] = X4, [X1, X4] = X5, [X2, X3] = X5

g6.N7 [X1, X3] = X4, [X1, X4] = X5, [X2, X3] = X6

g6.N8 [X1, X2] = X3 +X5, [X1, X3] = X4, [X2, X5] = X6

g6.N9 [X1, X2] = X3, [X1, X3] = X4, [X1, X5] = X6, [X2, X3] = X5

g6.N10 [X1, X2] = X3, [X1, X3] = X5, [X1, X4] = X6,
[X2, X3] = −X6, [X2, X4] = X5

g6.N11 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5, [X2, X3] = X6

g6.N12 [X1, X3] = X4, [X1, X4] = X6, [X2, X5] = X6

g6.N13 [X1, X2] = X5, [X1, X3] = X4, [X1, X4] = X6, [X2, X5] = X6

g±1
6.N14 [X1, X3] = X4, [X1, X4] = X6, [X2, X3] = X5, [X2, X5] = ±X6

g6.N15 [X1, X2] = X3 +X5, [X1, X3] = X4, [X1, X4] = X6, [X2, X5] = X6
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Table A.9: 6-dimensional inde
omposable nilpotent algebras (
ontinued)

[Xi, Xj]

g6.N16 [X1, X3] = X4, [X1, X4] = X5, [X1, X5] = X6,
[X2, X3] = X5, [X2, X4] = X6

g6.N17 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X6, [X2, X5] = X6

g±1
6.N18 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X6,

[X2, X3] = X5, [X2, X5] = ±X6

g6.N19 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5,
[X1, X5] = X6, [X2, X3] = X6

g6.N20 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5,
[X1, X5] = X6, [X2, X3] = X5, [X2, X4] = X6

g6.N21 [X1, X2] = X3, [X1, X5] = X6, [X2, X3] = X4,
[X2, X4] = X5, [X3, X4] = X6

g6.N22 [X1, X2] = X3, [X1, X3] = X5, [X1, X5] = X6,
[X2, X3] = X4, [X2, X4] = X5, [X3, X4] = X6

Mubarakzjanov's list in [58℄ 
ontains 99 
lasses of six-dimensional inde
omposable

almost nilpotent Lie algebras, namely g6.1, . . . , g6.99.
As �rst remarked by Turkowski, there is one algebra missing. The 
omplete (and

partly 
orre
ted) list 
an be found in the arti
le [11℄ of Campoamor-Stursberg

1

,

where the missing algebra is denoted by g∗6.92.
We list the unimodular among this 100 algebras in Tables A.10 to A.23 (where

some minor misprints have been 
orre
ted). Note that there is no table with Lie

algebras with nilradi
al g5.6 sin
e the only su
h algebra is not unimodular.

Table A.10: 6-dimensional inde
omposable unimodular almost abelian algebras

[Xi, Xj] 
pl. solv.

g
a,b,c,d
6.1 [X1, X6] = X1, [X2, X6] = aX2, [X3, X6] = bX3, yes

[X4, X6] = cX4, [X5, X6] = dX5,
0 < |d| ≤ |c| ≤ |b| ≤ |a| ≤ 1, a+ b+ c+ d = −1

1

The author wishes to express his gratitude to R. Campoamor-Stursberg for providing him

with 
opies of [11℄ and [58℄.
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Table A.11: 6-dimensional inde
omposable unimodular almost abelian algebras

(
ontinued)

[Xi, Xj ] 
. s.

g
a,c,d
6.2 [X1, X6] = aX1, [X2, X6] = X1 + aX2, [X3, X6] = X3, yes

[X4, X6] = cX4, [X5, X6] = dX5,
0 < |d| ≤ |c| ≤ 1, 2a+ c+ d = −1

g
− d+1

3
,d

6.3 [X1, X6] = −d+1
3
X1, [X2, X6] = X1 − d+1

3
X2, yes

[X3, X6] = X2 − d+1
3
X3, [X4, X6] = X4, [X5, X6] = dX5,
0 < |d| ≤ 1,

g
− 1

4

6.4 [X1, X6] = −1
4
X1, [X2, X6] = X1 − 1

4
X2, yes

[X3, X6] = X2 − 1
4
X3, [X4, X6] = X3 − 1

4
X4, [X5, X6] = X5

g
a,b
6.6 [X1, X6] = X1, [X2, X6] = aX2, [X3, X6] = X2 + aX3, yes

[X4, X6] = bX4, [X5, X6] = X4 + bX5, a ≤ b, a+ b = −1
2

g
a,− 2

3
a

6.7 [X1, X6] = aX1, [X2, X6] = X1 + aX2, [X3, X6] = X2 + aX3, yes

[X4, X6] = −3
2
aX4, [X5, X6] = X4 − 3

2
aX5, a 6= 0

g
a,b,c,p
6.8 [X1, X6] = aX1, [X2, X6] = bX2, [X3, X6] = cX3, no

[X4, X6] = pX4 −X5, [X5, X6] = X4 + pX5,
0 < |c| ≤ |b| ≤ |a|, a + b+ c+ 2p = 0

g
a,b,p
6.9 [X1, X6] = aX1, [X2, X6] = bX2, [X3, X6] = X2 + bX3, no

[X4, X6] = pX4 −X5, [X5, X6] = X4 + pX5,
a 6= 0, a + 2b+ 2p = 0

g
a,− 3

2
a

6.10 [X1, X6] = aX1, [X2, X6] = X1 + aX2, [X3, X6] = X2 + aX3, no

[X4, X6] = −3
2
aX4 −X5, [X5, X6] = X4 − 3

2
aX5

g
a,p,q,s
6.11 [X1, X6] = aX1, [X2, X6] = pX2 −X3, [X3, X6] = X2 + pX3, no

[X4, X6] = qX4 − sX5, [X5, X6] = sX4 + qX5,
as 6= 0, a+ 2p+ 2q = 0

g
−4p,p
6.12 [X1, X6] = −4pX1, [X2, X6] = pX2 −X3, no

[X3, X6] = X2 + pX3, [X4, X6] = X2 + pX4 −X5,
[X5, X6] = X3 +X4 + pX5, p 6= 0

Table A.12: 6-dimensional inde
omposable unimodular algebras with nilradi
al

g3.1 ⊕ 2g1
[Xi, Xj] 
pl. solv.

g
a,b,h
6.13 [X2, X3] = X1, [X1, X6] = (a+ b)X1, [X2, X6] = aX2, yes

[X3, X6] = bX3, [X4, X6] = X4, [X5, X6] = hX5,
a 6= 0, 2a+ 2b+ h = −1

g
a,b
6.14 [X2, X3] = X1, [X1, X6] = (a+ b)X1, [X2, X6] = aX2, yes

[X3, X6] = bX3, [X4, X6] = X4, [X5, X6] = X1 + (a + b)X5,
a 6= 0, a + b = −1

3
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Table A.13: 6-dimensional inde
omposable unimodular algebras with nilradi
al

g3.1 ⊕ 2g1 (
ontinued)

[Xi, Xj] 
. s.

g−1
6.15 [X2, X3] = X1, [X2, X6] = X2 +X4, yes

[X3, X6] = −X3 +X5, [X4, X6] = X4, [X5, X6] = −X5,

g
− 1

2
,0

6.17 [X2, X3] = X1, [X1, X6] = −1
2
X1, [X2, X6] = −1

2
X2, yes

[X3, X6] = X4, [X5, X6] = X5,

g
a,−2a−3
6.18 [X2, X3] = X1, [X1, X6] = (1 + a)X1, [X2, X6] = aX2, yes

[X3, X6] = X3 +X4, [X4, X6] = X4,
[X5, X6] = −(2a+ 3)X5, a 6= −3

2

g
− 4

3

6.19 [X2, X3] = X1, [X1, X6] = −1
3
X1, [X2, X6] = −4

3
X2, yes

[X3, X6] = X3 +X4, [X4, X6] = X4, [X5, X6] = X1 − 1
3
X5

g−3
6.20 [X2, X3] = X1, [X1, X6] = X1, [X3, X6] = X3 +X4, yes

[X4, X6] = X1 +X4, [X5, X6] = −3X5

ga6.21 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, yes

[X3, X6] = aX3, [X4, X6] = X4, [X5, X6] = −(4a + 1)X5,
a 6= −1

4

g
− 1

6

6.22 [X2, X3] = X1, [X1, X6] = −1
3
X1, [X2, X6] = −1

6
X2 +X3, yes

[X3, X6] = −1
6
X3, [X4, X6] = X4, [X5, X6] = X1 − 1

3
X5

g
a,−7a,ε
6.23 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, yes

[X3, X6] = aX3 +X4, [X4, X6] = aX4,
[X5, X6] = εX1 − 5aX5, εa = 0

g
b,−1−b
6.25 [X2, X3] = X1, [X1, X6] = −bX1, yes

[X2, X6] = X2, [X3, X6] = −(1 + b)X3,
[X4, X6] = bX4 +X5, [X5, X6] = bX5

g−1
6.26 [X2, X3] = X1, [X2, X6] = X2, [X3, X6] = −X3 yes

[X4, X6] = X5, [X5, X6] = X1

g
−2b,b,0
6.27 [X2, X3] = X1, [X1, X6] = −bX1, [X2, X6] = −2bX2, yes

[X3, X6] = bX3 +X4, [X4, X6] = bX4 +X5,
[X5, X6] = bX5, b 6= 0

g−2
6.28 [X2, X3] = X1, [X1, X6] = 2X1, [X2, X6] = X2 +X3, yes

[X3, X6] = X3, [X4, X6] = −2X4 +X5, [X5, X6] = −2X5

g
−2b,b,ε
6.29 [X2, X3] = X1, [X1, X6] = −bX1, [X2, X6] = −2bX2, yes

[X3, X6] = bX3 +X4, [X4, X6] = bX4 +X5,
[X5, X6] = εX1 + bX5, εb = 0 (?)

g
a,−6a−h,h,ε
6.32 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = −X2 + aX3, [X4, X6] = εX1 + (2a+ h)X4,
[X5, X6] = −(6a + h)X5, a > −1

4
h, εh = 0
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Table A.14: 6-dimensional inde
omposable unimodular algebras with nilradi
al

g3.1 ⊕ 2g1 (
ontinued)

[Xi, Xj ] 
. s.

g
a,−6a
6.33 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = −X2 + aX3, [X4, X6] = −6aX4,
[X5, X6] = X1 + 2aX5, a ≥ 0

g
a,−4a,ε
6.34 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = −X2 + aX3, [X4, X6] = −2aX4,
[X5, X6] = εX1 − 2aX5, εa = 0

g
a,b,c
6.35 [X2, X3] = X1, [X1, X6] = (a+ b)X1, [X2, X6] = aX2, no

[X3, X6] = bX3, [X4, X6] = cX4 +X5,
[X5, X6] = −X4 + cX5, a + b+ c = 0, a2 + b2 6= 0

g
a,−2a
6.36 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = aX3, [X4, X6] = −2aX4 +X5,
[X5, X6] = −X4 − 2aX5

g
−a,−2a,s
6.37 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = −X2 + aX3, [X4, X6] = −2aX4 + sX5,
[X5, X6] = −sX4 − 2aX5, s 6= 0

g06.38 [X2, X3] = X1, [X2, X6] = X3 +X4, no

[X3, X6] = −X2 +X5, [X4, X6] = X5, [X5, X6] = −X4

Table A.15: 6-dimensional inde
omposable unimodular algebras with nilradi
al

g4.1 ⊕ g1

[Xi, Xj] 
. s.

g
−4−3h,h
6.39 [X1, X5] = X2, [X4, X5] = X1, [X1, X6] = (1 + h)X1, yes

[X2, X6] = (2 + h)X2, [X3, X6] = −(4 + 3h)X3,
[X4, X6] = hX4, [X5, X6] = X5, h 6= −4

3

g
− 3

2

6.40 [X1, X5] = X2, [X4, X5] = X1, yes

[X1, X6] = −1
2
X1, [X2, X6] =

1
2
X2,

[X3, X6] = X2 +
1
2
X3, [X4, X6] = −3

2
X4, [X5, X6] = X5

g−1
6.41 [X1, X5] = X2, [X4, X5] = X1, yes

[X2, X6] = X2, [X3, X6] = −X3,
[X4, X6] = X3 −X4, [X5, X6] = X5
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Table A.16: 6-dimensional inde
omposable unimodular algebras with nilradi
al

g4.1 ⊕ g1 (
ontinued)

[Xi, Xj] 
. s.

g
− 5

3

6.42 [X1, X5] = X2, [X4, X5] = X1, yes

[X1, X6] = −2
3
X1, [X2, X6] =

1
3
X2, [X3, X6] = X3,

[X4, X6] = −5
3
X4, [X5, X6] = X3 +X5

g−7
6.44 [X1, X5] = X2, [X4, X5] = X1, yes

[X1, X6] = 2X1, [X2, X6] = 3X2, [X3, X6] = −7X3,
[X4, X6] = X4, [X5, X6] = X4 +X5

g
−3,ε
6.47 [X1, X5] = X2, [X4, X5] = X1, yes

[X1, X6] = X1, [X2, X6] = X2, [X3, X6] = −3X3,
[X4, X6] = εX2 +X4, ε ∈ {0,±1}

Table A.17: 6-dimensional inde
omposable unimodular algebras with nilradi
al

g5.1

[Xi, Xj] 
. s.

g
2(1+l),l
6.54 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = X1, [X2, X6] = lX2, [X3, X6] = (−1− 2l)X3,
[X4, X6] = (−2− l)X4, [X5, X6] = 2(1 + l)X5

g−4
6.55 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = X1, [X2, X6] = −3X2, [X3, X6] = 4X3,
[X4, X6] = X1 +X4, [X5, X6] = −3X5

g
4

3

6.56 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = X1, [X2, X6] = −1
3
X2, [X3, X6] = X2 − 1

3
X3,

[X4, X6] = −5
3
X4, [X5, X6] =

4
3
X5

g
− 2

3

6.57 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = X1, [X2, X6] = −4
3
X2, [X3, X6] =

5
3
X3,

[X4, X6] = −2
3
X4, [X5, X6] = X4 − 2

3
X5

g
− 3

4

6.61 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = 2X1, [X2, X6] = −3
2
X2, [X3, X6] = X3,

[X4, X6] = −5
2
X4, [X5, X6] = X3 +X5

g−1
6.63 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = X1, [X2, X6] = −X2, [X3, X6] = X3,
[X4, X6] = X2 −X4

g
4l,l
6.65 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = lX1 +X2, [X2, X6] = lX2, [X3, X6] = −3lX3 +X4,
[X4, X6] = −3lX4, [X5, X6] = 4lX5
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Table A.18: 6-dimensional inde
omposable unimodular algebras with nilradi
al

g5.1 (
ontinued)

[Xi, Xj] 
pl. solv.

g
4p,p
6.70 [X3, X5] = X1, [X4, X5] = X2, no

[X1, X6] = pX1 +X2, [X2, X6] = −X1 + pX2,
[X3, X6] = −3pX3 +X4, [X4, X6] = −X3 − 3pX4,

[X5, X6] = 4pX5

Table A.19: 6-dimensional inde
omposable unimodular algebras with nilradi
al

g5.2

[Xi, Xj] 
pl. solv.

g
− 7

4

6.71 [X2, X5] = X1, [X3, X5] = X2, [X4, X5] = X3, yes

[X1, X6] =
5
4
X1, [X2, X6] =

1
4
X2, [X3, X6] = −3

4
X3,

[X4, X6] = −7
4
X4, [X5, X6] = X5

Table A.20: 6-dimensional inde
omposable unimodular algebras with nilradi
al

g5.3

[Xi, Xj] 
pl. solv.

g−1
6.76 [X2, X4] = X3, [X2, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = −X1, [X3, X6] = X3,
[X4, X6] = X4, [X5, X6] = −X5

g6.78 [X2, X4] = X3, [X2, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = −X1, [X3, X6] = X3,
[X4, X6] = X3 +X4, [X5, X6] = −X5

Table A.21: 6-dimensional inde
omposable unimodular algebras with nilradi
al

g5.4

[Xi, Xj] 
pl. solv.

g
0,l
6.83 [X2, X4] = X1, [X3, X5] = X1, yes

[X2, X6] = lX2, [X3, X6] = lX3,
[X4, X6] = −lX4, [X5, X6] = −X4 − lX5

g6.84 [X2, X4] = X1, [X3, X5] = X1, yes

[X2, X6] = X2, [X4, X6] = −X4, [X5, X6] = X3
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Table A.22: 6-dimensional inde
omposable unimodular algebras with nilradi
al

g5.4 (
ontinued)

[Xi, Xj] 
pl. solv.

g
0,µ0,ν0
6.88 [X2, X4] = X1, [X3, X5] = X1, 
pl. solv.

[X2, X6] = µ0X2 + ν0X3, [X3, X6] = −ν0X2 + µ0X3, m
[X4, X6] = −µ0X4 + ν0X5, [X5, X6] = −ν0X4 − µ0X5 ν0 = 0

g
0,ν0,s
6.89 [X2, X4] = X1, [X3, X5] = X1, 
pl. solv.

[X2, X6] = sX2, [X3, X6] = ν0X5, m
[X4, X6] = −sX4, [X5, X6] = −ν0X3 ν0 = 0

g
0,ν0
6.90 [X2, X4] = X1, [X3, X5] = X1, 
pl. solv.

[X2, X6] = X4, [X3, X6] = ν0X5, m
[X4, X6] = X2, [X5, X6] = −ν0X3, ν0 6= 1 ν0 = 0

g6.91 [X2, X4] = X1, [X3, X5] = X1, no

[X2, X6] = X4, [X3, X6] = X5,
[X4, X6] = X2, [X5, X6] = −X3

g
0,µ0,ν0
6.92 [X2, X4] = X1, [X3, X5] = X1, no

[X2, X6] = ν0X3, [X3, X6] = −µ0X2,
[X4, X6] = µ0X5, [X5, X6] = −ν0X4

g06.92∗ [X2, X4] = X1, [X3, X5] = X1, no

[X2, X6] = X4, [X3, X6] = X5,
[X4, X6] = −X2, [X5, X6] = −X3

g
0,ν0
6.93 [X2, X4] = X1, [X3, X5] = X1, 
pl. solv.

[X2, X6] = X4 + ν0X5, [X3, X6] = ν0X4, m
[X4, X6] = X2 − ν0X3, [X5, X6] = −ν0X2 |ν0| ≤ 1

2

Table A.23: 6-dimensional inde
omposable unimodular algebras with nilradi
al

g5.5

[Xi, Xj] 
pl. solv.

g−2
6.94 [X3, X4] = X1, [X2, X5] = X1, [X3, X5] = X2, yes

[X2, X6] = −X2, [X3, X6] = −2X3,
[X4, X6] = 2X4, [X5, X6] = X5

The six-dimensional solvable Lie algebras with four-dimensional nilradi
al were


lassi�ed by Turkowski in [75℄. We list the unimodular among them in Tables

A.24 � A.26. Note that there is no table with Lie algebras with nilradi
al g4.1
sin
e the only su
h algebra is not unimodular.

The equations for the twenty-�fth algebra in Turkowoski's list 
ontain a minor

misprint that we have 
orre
ted here.
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Table A.24: 6-dimensional inde
omposable unimodular algebras with nilradi
al

4g1
[Xi, Xj] 
. s.

g
a,b,c,d
6.101 [X5, X1] = aX1, [X5, X2] = cX2, [X5, X4] = X4, yes

[X6, X1] = bX1, [X6, X2] = dX2, [X6, X3] = X3,
a+ c = −1, b+ d = −1, ab 6= 0, c2 + d2 6= 0

g
−1,b,−2−b
6.102 [X5, X1] = −X1, [X5, X2] = X2, [X5, X3] = X4, yes

[X6, X1] = bX1, [X6, X2] = (−2 − b)X2,
[X6, X3] = X3, [X6, X4] = X4

g
−2,−1
6.105 [X5, X1] = −2X1, [X5, X3] = X3 +X4, yes

[X5, X4] = X4, [X6, X1] = −X1, [X6, X2] = X2

g
−1,b,0
6.107 [X5, X1] = −X1, [X5, X2] = −X2, [X5, X3] = X3 +X4, no

[X5, X4] = X4, [X6, X1] = X2, [X6, X2] = −X1

g
a,b,−a,d
6.113 [X5, X1] = aX1, [X5, X2] = −aX2, [X5, X3] = X4, no

[X6, X1] = bX1, [X6, X2] = dX2, [X6, X3] = X3,
[X6, X4] = X4, a

2 + b2 6= 0, a2 + d2 6= 0, b+ d = −2

g
a,−1,− a

2

6.114 [X5, X1] = aX1, [X5, X3] = −a
2
X3 +X4, no

[X5, X4] = −X3 +
a
2
X4, [X6, X1] = −X1,

[X6, X2] = X2, a 6= 0

g
−1,b,c,−c
6.115 [X5, X1] = X1, [X5, X2] = X2, no

[X5, X3] = −X3 + bX4, [X5, X4] = −bX3 −X4,
[X6, X1] = cX1 +X2, [X6, X2] = −X1 + cX2,
[X6, X3] = −cX3, [X6, X4] = −cX4, b 6= 0

g
0,−1
6.116 [X5, X1] = X2, [X5, X3] = X4, [X5, X4] = −X3, no

[X6, X1] = X1, [X6, X2] = X2,
[X6, X3] = −X3, [X6, X4] = −X4

g
0,b,−1
6.118 [X5, X1] = X2, [X5, X2] = −X1, [X5, X3] = bX4, no

[X5, X4] = −bX3, [X6, X1] = X1, [X6, X2] = X2,
[X6, X3] = −X3, [X6, X4] = −X4, b 6= 0

g
−1,−1
6.120 [X5, X2] = −X2, [X5, X4] = X4, [X5, X6] = X1, yes

[X6, X2] = −X1, [X6, X3] = X3

g
0,−2
6.125 [X5, X3] = X4, [X5, X4] = −X3, [X5, X6] = X1, no

[X6, X2] = −2X2, [X6, X3] = X3, [X6, X4] = X4

Table A.25: 6-dimensional inde
omposable unimodular algebras with nilradi
al

g3.1 ⊕ g1

[Xi, Xj ] 
. s.

g
−2,−2
6.129 [X2, X3] = X1, [X5, X1] = X1, [X5, X2] = X2, yes

[X5, X4] = −2X4, [X6, X1] = X1,
[X6, X3] = X3, [X6, X4] = −2X4
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Table A.26: 6-dimensional inde
omposable unimodular algebras with nilradi
al

g3.1 ⊕ g1 (
ontinued)

[Xi, Xj] 
. s.

g
0,−4
6.135 [X2, X3] = X1, [X5, X2] = X3, [X5, X3] = −X1, no

[X6, X1] = 2X1, [X6, X2] = X2,
[X6, X3] = X3, [X6, X4] = −4X4

In the introdu
tion of [58℄, Mubarakzjanov quotes his own result that a six-

dimensional solvable Lie algebra with three-dimensional nilradi
al is de
ompos-

able. Therefore, by Proposition 3.2.5, we have listed all unimodular inde
ompos-

able solvable Lie algebras of dimension six.

The �rst Betti numbers of the six-dimensional unimodular inde
omposable Lie

algebras are listed in Tables A.27 � A.29. The word �always� means that the


ertain value arises independent of the parameters on whi
h the Lie algebra de-

pends, but we suppose that the parameters are 
hosen su
h that Lie algebra is

unimodular. The word �otherwise� in the tables means that this value arises for

all parameters su
h that the Lie algebra is unimodular and the parameters are

not mentioned in another 
olumn of the Lie algebra's row.

Table A.27: b1(g6.i) for g6.i unimodular

i b1 = 1 b1 = 2 b1 = 3

1 always - -

2 a 6= 0 a = 0 -

3 d 6= −1 d = −1 -

4 always - -

6 a, b 6= 0 a = −1
2
∧ b = 0 -

7 always - -

8 always - -

9 b 6= 0 b = 0 -

10 a 6= 0 a = 0 -

11 always - -

12 always - -

13 b 6= 0 ∧ h 6= 0 otherwise a = −1
2
∧ b = h = 0

14 otherwise a = −1
3
∧ b = 0 -

15 always - -

17 - always -

18 a 6= 0 a = 0 -

19 always - -

20 - always -
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Table A.28: b1(g6.i) for g6.i unimodular (
ontinued)

i b1 = 1 b1 = 2 b1 = 3 b1 = 4 b1 = 5

21 a 6= 0 a = 0 - - -

22 always - - - -

23 a 6= 0 - a = 0 - -

25 b /∈ {−1, 0} b ∈ {−1, 0} - - -

26 - always - - -

27 always - - - -

28 always - - - -

29 b 6= 0 - b = 0 - -

32 h /∈ {−2a,−6a} otherwise - - -

33 a 6= 0 - a = 0 - -

34 a 6= 0 - a = 0 - -

35 a, b 6= 0 otherwise - - -

36 a 6= 0 a = 0 - - -

37 always - - - -

38 always - - - -

39 h 6= 0 h = 0 - - -

40 always - - - -

41 always - - - -

42 always - - - -

44 always - - - -

47 - always - - -

54 l /∈ {−2,−1,−1
2
} l ∈ {−2,−1,−1

2
} - - -

55 always - - - -

56 always - - - -

57 always - - - -

61 always - - - -

63 - always - - -

65 l 6= 0 - l = 0 - -

70 p 6= 0 p = 0 - - -

71 always - - - -

76 always - - - -

78 always - - - -

83 l 6= 0 - - l = 0 -

84 - always - - -

88 µ0 6= 0 ∨ ν0 6= 0 - - - µ0 = ν0 = 0
89 ν0 6= 0 ∧ s 6= 0 - otherwise - ν0 = s = 0
90 ν0 6= 0 - ν0 = 0 - -
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Table A.29: b1(g6.i) for g6.i unimodular (
ontinued)

i b1 = 1 b1 = 2 b1 = 3 b1 = 4 b1 = 5

91 always - - - -

92 µ0 6= 0 ∧ ν0 6= 0 - otherwise - µ0 = ν0 = 0
92∗ always - - - -

93 ν0 6= 0 - ν0 = 0 - -

94 always - - - -

101 - always - - -

102 - always - - -

105 - always - - -

107 - always - - -

113 - always - - -

114 - always - - -

115 - always - - -

116 - always - - -

118 - always - - -

120 - always - - -

125 - always - - -

129 - always - - -

135 - always - - -
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Appendix B

Integer Polynomials

In this thesis, we often try to use ne
essary 
onditions for a matrix to be 
on-

jugated to an integer matrix. We state brie�y the used results. Vi
e versa, we

sometimes want to �nd integer matri
es with given minimal polynomial. We also

present a few 
onstru
tions.

Let be n ∈ N+, K a �eld and A ∈ M(n, n;K). The 
hara
teristi
 polynomial
of A is the moni
 polynomial

PA(X) := det(X id−A) ∈ K[X ],

and theminimal polynomial mA(X) is the unique moni
 divisor of lowest degree of

PA(X) in K[X ] su
h thatmA(A) = 0. (Note, by the theorem of Cayley-Hamilton,

one has PA(A) = 0.)
If two matri
es are 
onjugated, then they have the same 
hara
teristi
 resp.

minimal polynomials.

λ ∈ K is 
alled root of A if λ is a root of the 
hara
teristi
 polynomial,


onsidered as polynomial in K[X ], where K denotes the algebrai
 
losure of K.
The next proposition follows dire
tly from [49, Corollaries XIV.2.2, XIV.2.3℄.

Proposition B.1. Let n ∈ N+. If A ∈ M(n, n;C) and B ∈ M(n, n;Q) are


onjugated via an element of GL(n,C), then holds PA(X) = PB(X) ∈ Q[X ],
mA(X) = mB(X) ∈ Q[X ] and mA(X) divides PA(X) in Q[X ]. �

Proposition B.2. If P (X) ∈ Z[X ], m(X) ∈ Q[X ] are moni
 polynomials and

m(X) divides P (X) in Q[X ], then holds m(X) ∈ Z[X ].

Proof. Let P (X), m(X) be as in the proposition and f(X) ∈ Q[X ] non-

onstant with P (X) = f(X)m(X). There exist k, l ∈ Z \ {0} su
h that

k f(X) =
∑

i

aiX
i, l m(X) =

∑

j

bjX
j ∈ Z[X ]

119
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are primitive. (An integer polynomial is 
alled primitive if its 
oe�
ients are

relatively prime.) We have

kl P (X) = (
∑

i

aiX
i)(
∑

j

bjX
j)

and 
laim kl = ±1.
Otherwise, there is a prime p ∈ N that divides kl. Sin
e the 
oe�
ients of

k f(X) resp. l m(X) are relatively prime, there are minimal i0, j0 ∈ N su
h that

p does not divide ai0 resp. bj0.
The 
oe�
ient of X i0+j0

of kl f(X)m(X) is

ai0bj0 + ai0−1bj0+1 + ai0+1bj0−1 + . . .

and p divides ea
h summand ex
ept the �rst. But sin
e p | kl, p divides the whole
sum. This is a 
ontradi
tion. �

Theorem B.3. Let n ∈ N+ and A ∈ M(n, n;C) be 
onjugated to an integer

matrix. Then holds PA(X), mA(X) ∈ Z[X ].

Proof. This follows from the pre
eding two propositions. �

Lemma B.4 ([40, Lemma 2.2℄). Let P (X) = X3 − kX2 + lX − 1 ∈ Z[X ].
Then P has a double root X0 ∈ R if and only if X0 = 1 or X0 = −1 for

whi
h P (X) = X3−3X2+3X−1 or P (X) = X3+X2−X−1 respe
tively. �

Proposition B.5 ([38, Proposition 5℄). Let λi ∈ R+ with λi+
1
λi

= mi ∈ N+ and

mi > 2 for i ∈ {1, 2}.
Then there exists no element in SL(3,Z) with roots λ1, λ2,

1
λ1λ2

. �

Proposition B.6. Let P (X) = X4 −mX3 + pX2 − nX + 1 ∈ Z[X ].
Then P has a root with multipli
ity > 1 if and only if the zero set of P

equals {1, 1, a, a−1}, {−1,−1, a, a−1}, {a, a−1, a, a−1} or {a,−a−1, a,−a−1} for

�xed a ∈ C.

Proof. The most part of the proof was done by Harshavardhan in the proof

of [38, Propositon 2℄.

We set S := m2 + n2
and T := mn and get the dis
riminant D of P (X) as

D = 16p4 − 4Sp3 + (T 2 − 80T − 128)p2 + 18S(T + 8)p (B.1)

+256− 192T + 48T 2 − 4T 3 − 27S2.

Note that P (X) has a root of multipli
ity > 1 if and only if D = 0. Solving

D = 0 for S, we see

S = − 2

27
p3 +

1

3
pT +

8

3
p± 2

27

√
(p2 − 3T + 12)3,
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and sin
e S and T are integers, there is q ∈ Z with

p2 − 3T + 12 = q2,

whi
h implies

S = 4p+
1

27
(p3 − 3pq2 ± 2q3) (B.2)

T =
1

3
(p2 − q2 + 12).

We �rst 
onsider the plus sign in equation (B.2). Then one has

(m+ n)2 = S + 2T =
1

27
(p+ 2q + 6)(p− q + 6)2,

(m− n)2 = S − 2T =
1

27
(p+ 2q − 6)(p− q − 6)2,

and this implies the existen
e of ki, li ∈ N, i = 1, 2, su
h that

3k21 = (p+ 2q + 6)k22,

3l21 = (p+ 2q − 6)l22.

We shall show: |m| = |n|
[If l2 = 0, the 
laim is proved. Therefore, we 
an assume l2 6= 0.
Case 1: k2 = 0
Then holds k1 = 0 and this means S + 2T = 0, i.e. (m+ n)2 = 0, so we have

m = −n.
Case 2: k2 6= 0
We write k := k1

k2
and l := l1

l2
. Then holds

3k2 = p+ 2q + 6 ∈ Z,

3l2 = p+ 2q − 6 ∈ Z,

and 3(k2 − l2) = 12. Therefore, we have k2 − l2 = 4, so k2 = 4, l2 = 0, i.e. l1 = 0,
S − 2T = 0 and m = n. ℄

Now, 
onsider the minus sign in equation (B.2). Then one has

(m+ n)2 = S + 2T =
1

27
(p− 2q + 6)(p+ q + 6)2,

(m− n)2 = S − 2T =
1

27
(p− 2q − 6)(p+ q − 6)2,

and shows analogously as above |m| = |n|.
We have shown: If P (X) has a multiple root, then holds m = ±n.
If m = n, then one 
al
ulates the solutions of D = 0 in (B.1) as the following
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(i) p = −2 + 2m,

(ii) p = −2− 2m,

(iii) p = 2 + m2

4
,

and if m = −n, then the real solution of D = 0 in (B.1) is

(iv) p = −2 + m2

4
.

Moreover, a short 
omputation yields the zero set of P (X) in the 
ases (i) �

(iv) as {1, 1, a, a−1}, {−1,−1, a, a−1}, {a, a−1, a, a−1}, {a,−a−1, a,−a−1}, respe
-
tively. �

Proposition B.7 ([1, Proposition 4.4.14℄). Let K be a �eld and

m(X) = Xn + an−1X
n−1 + . . .+ a1X

1 + a0 ∈ K[X ]

a moni
 polynomial. Then




0 0 . . . 0 0 −a0
1 0 . . . 0 0 −a1
0 1 . . . 0 0 −a2
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . 1 0 −an−2

0 0 . . . 0 1 −an−1




has minimal polynomial

m(X). �

If one is willing to 
onstru
t an integer matrix with given 
hara
teristi
 and

minimal polynomial, one always 
an 
hose any matrix M whi
h has the desired

polynomials and try to �nd an invertible matrix T su
h that T−1MT has integer

entries. Of 
ourse, this 
an be di�
ult. In the 
ase of 4 × 4 - matri
es we have

the following easy 
onstru
tion.

Proposition B.8 ([38, Se
tion 2.3.1℄).

(i) Let integers m,n, p ∈ Z be given.

Choose m1, . . . , m4 ∈ Z su
h that

∑4
i=1mi = m and set

a := −m2
1p+m3

1m2 +m3
1m3 +m3

1m4 +m1n− 1,

b := (−m2 −m1)p+m1m
2
2 +m1m2m3 +m1m2m4 +m2

2m3 +m2
2m4

+m2
1m2 +m2

1m3 +m2
1m4 + n,

c := m1m2 +m1m3 +m1m4 +m2m3 +m2m4 +m3m4 − p.

Then the matrix




m1 0 0 a
1 m2 0 b
0 1 m3 c
0 0 1 m4


 has X4 −mX3 + pX2 − nX + 1

as 
hara
teristi
 polynomial.
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(ii) Let m ∈ 2Z be an even integer. Then the matrix




m
2

0 −1 0
0 m

2
0 −1

1 0 0 0
0 1 0 0




has the 
hara
teristi
 polynomial (X2 − m
2
X + 1)2, and (X2 − m

2
X + 1) as

minimal polynomial. �
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Appendix C

Group Extensions

De�nition C.1. A group extension of a group Q by a group N is a short exa
t

sequen
e of groups {1} → N → G
π→ Q→ {1}.

If s : Q → G is a group homomorphism with π ◦ s = id, then s is 
alled

se
tion. In this 
ase, we say that the extension is split.

Proposition C.2. A group extension {1} → N → G
π→ F → {1} of a free group

F is split.

Proof. Let {xi}i the set of generators of F . Choose gi ∈ G su
h that π(gi) = xi
and de�ne a se
tion s : F → G by s(xi) = gi. �

Lemma C.3. Let {1} → A
i→ G → Q

π→ {1} be an extension by an abelian

group A. Then

q.a := i−1(gq · i(a) · g−1
q ) with any gq ∈ π−1({q})

de�nes a natural Q-module stru
ture on A. �

Lemma C.4. Let {1} → N
i→ G

π→ Q → {1} be a split group extension with

se
tion s : Q→ G. Then

µ : Q×N → N, µ((q, n)) = i−1(s(q) · i(n) · s(q)−1),

de�nes an a
tion of Q on N by group automorphisms.

If N is abelian, the a
tion 
oin
ides with the natural Q-module stru
ture of

N . �

Re
all the de�nition of the semidire
t produ
t Q ⋉µ N as set Q × N with

group stru
ture (q1, n1)(q2, n2) = (q1q2, µ(q
−1
2 , n1)n2).

Lemma C.5. Let N,Q be groups and µ : Q×N → N an a
tion by group auto-

morphisms.

Then {1} → N
i⋉→ Q ⋉µ N

π⋉→ Q → {1} is a split group extension, where

i⋉(n) = (n, eQ) and π⋉((q, n)) = q. �
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De�nition C.6. Let {1} → N → Gk → Q → {1}, k ∈ {1, 2}, be group exten-

sions. They are 
alled equivalent, if there is a group homomorphism ϕ : G1 → G2

su
h that the following diagram 
ommutes:

{1} ✲ N ✲ G1
✲ Q ✲ {1}

{1} ✲ N

id

❄
✲ G2

❄
✲ Q

id

❄
✲ {1}

Note, by the 5-Lemma, ϕ is ne
essary an isomorphism.

Proposition C.7. Let {1} → N
i→ G

π→ Q → {1} be a split group extension

with se
tion s : Q→ G.
Then the extension is equivalent to the extension of N by Q whi
h is given by

the Lemmata C.4 and C.5.

Proof. De�ne ϕ : Q⋉µN → G by f(q, n) = s(q) · i(n). ϕ is a homomorphism

sin
e

ϕ((q1, n1)(q2, n2)) = ϕ
(
(q1q2, µ(q

−1
2 , n1)n2)

)
= s(q1q2) · i(µ(q−1

2 , n1)n2)

= s(q1q2) · i(µ(q−1
2 , n1)n2)

= s(q1) · s(q2) · s(q2)−1 · i(n1) · s(q2) · i(n2)

= ϕ((q1, s1)) · ϕ((q2, n2)).

Further, ϕ satis�es the 
ommutativity 
ondition of the last lemma

ϕ(i⋉(n, eQ)) = s(eQ) · i(n) = i(n),

π
(
ϕ((q, n))

)
= π(s(q) · i(n)) = π(s(q)) · π(i(n)) = q = π⋉((q, n)).

Therefore, the proposition follows. �

De�nition C.8. Let {0} → A
i→ Q⋉ A→ Q → {1} be a split extension by an

abelian group A. Two se
tions s1, s2 : Q→ Q⋉A are 
alled A-equivalent if and
only if there is an element a ∈ A su
h that

s1(q) = i(a) · s2(q) · i(a)−1

for all q ∈ Q.

De�nition C.9. Let Q be a group and A a Q-module.

A 1-
o
y
le of Q with 
oe�
ients in A is a map f : Q→ A with

∀q1,q2∈Q f(q1q2) = f(q2) + q−1
2 .f(q1)
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The set Z1(Q,A) of 1-
o
y
les is an abelian group with obvious group stru
ture.

A 1-boundary of Q with 
oe�
ients in A is a map

fa : Q −→ A, fa(q) = q−1.a− a with �xed a ∈ A.

The set B1(Q,A) of 1-boundaries forms a subgroup of Z1(G,A).
The group H1(G,A) := Z1(G,A)/B1(Q,A) is 
alled �rst 
ohomology group

of Q with 
oe�
ients in A.

Theorem C.10 ([9, Propsition IV.2.3℄). Let {0} → A→ Q⋉ A → Q → {1} be

a split extension by an abelian group A. Consider A with its natural Q-module
stru
ture.

Then the elements of H1(Q,A) are in 1 − 1 
orresponden
e with the set of

A-
onjuga
y 
lasses of se
tions s : Q→ Q⋉ A via [f ] 7→ [s(q) :=
(
q, f(q)

)
]. �

De�nition C.11. Let Q be a group and A a Q-module.

A 2-
o
y
le of Q with 
oe�
ients in A is a map f : Q×Q→ A su
h that for

all q1, q2, q3 ∈ Q

q−1
3 .f(q1, q2) + f(q1q2, q3) = f(q1, q2q3) + f(q2, q3)

holds. The set Z2(Q,A) of 2-
o
y
les is an abelian group with obvious group

stru
ture.

A 2-boundary of Q with 
oe�
ients in A is a map

fh : Q×Q −→ A

(q1, q2) 7−→ q−1
2 .h(q1)− h(q1q2) + h(q2)

with a �xed map h : Q→ A.
The set B2(Q,A) of 2-boundaries forms a subgroup of Z2(G,A).
The group H2(G,A) := Z2(G,A)/B2(Q,A) is 
alled se
ond 
ohomology group

of Q with 
oe�
ients in A.

Theorem C.12 ([9, Theorem IV.3.12℄). Let Q be a group and A a Q-module.
Then the elements of H2(Q,A) are in 1 − 1 
orresponden
e with the set of

equivalen
e 
lasses of extensions of Q by A via [f ] 7→ [Ef ]. Ef denotes the

extension

{0} −→ A
i−→ Gf

π−→ Q −→ {1},
where Gf := Q× A with group stru
ture given by

(q1, a1)(q2, a2) = (q1q2, q
−1
2 .a1 + a2 + f(q1, q2)),

and in
lusion i(a) = (eQ, a) as well as proje
tion π(q, a) = q. �
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