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Vorwort

Bis in die siebziger Jahre war niht bekannt, ob es kompakte symplektishe Man-

nigfaltigkeiten gibt, die keine Kähler-Struktur tragen. Das erste Beispiel einer sol-

hen Mannigfaltigkeit wurde 1976 von W. P. Thurston angegeben. Er konstruierte

in [73℄ eine symplektishe vier-dimensionale Nilmannigfaltigkeit (d.i. ein kompak-

ter Quotient einer zusammenhängenden und einfah-zusammenhängenden nilpo-

tenten Liegruppe nah einer diskreten Untergruppe) mit erster Betti-Zahl b1 = 3.
Aus topologishen Gründen kann diese Mannigfaltigkeit niht Kählersh sein,

denn die Betti-Zahlen b2i+1 von ungeradem Grad sind für Kähler-Mannigfaltig-

keiten gerade. L. A. Cordero, M. Fernández und A. Gray haben in den ahtziger

Jahren weitere Beispiele angegeben (vgl. [13℄), die aber teilweise gerade Betti-

Zahlen haben. Die Autoren weisen nah, daÿ ihre Beispiele niht formal sind.

Hieraus folgt dann, daÿ sie auh niht Kählersh sein können, denn P. Deligne,

P. Gri�ths, J. Morgan und D. Sullivan haben in [16℄ bewiesen, daÿ Formalität

notwendig für die Existenz von Kähler-Strukturen ist.

Formalität ist eine wihtige Eigenshaft eines Raumes, die es ermögliht,

rational-homotopishe Informationen aus der Kohomolgie-Algebra zu gewinnen.

Die o.g. Arbeit [13℄ zeigt insbesondere, daÿ symplektishe Mannigfaltigkeiten i.a.

niht formal sind. Auÿerdem stellen Methoden der rationalen Homotopie Mög-

lihkeiten bereit, kompakte symplektishe niht-Kählershe Mannigfaltigkeiten zu

konstruieren.

Es sei angemerkt, daÿ es formale symplektishe Mannigfaltigkeiten gibt, die

den Kohomologietyp einer Kähler-Mannigfaltigkeit haben und trotzdem niht

Kählersh sind. Ein Beispiel hierfür haben M. Fernández und A. Gray [25℄ gege-

ben.

Ih gebe im ersten Kapitel dieser Arbeit einen kurzen Überblik über die Theo-

rie der minimalen Modelle, insoweit sie zur De�nition des Begri�es der Formalität

notwendig ist.

M. Fernández und V. Muñoz haben in dieser Dekade eine Arbeit [28℄ über die

Geographie formaler Mannigfaltigkeiten geshrieben. In Abhängigkeit der Dimen-

sion und der ersten Betti-Zahl b1 sagen sie genau, wann eine geshlossene formale

Mannigfaltigkeit existiert. Im zweiten Kapitel versuhe ih, dieselbe Fragestel-

lung für Mannigfaltigkeiten, die zusätzlih eine symplektishe Struktur tragen,

zu klären. Dies ist zunähst nur mit Ausnahme des sehs-dimensionalen Falles
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mit b1 = 1 gelungen. Ferner kann man auh eine Aussage über die Geographie

formaler geshlossener Kontaktmannigfaltigkeiten mit erster Betti-Zahl gröÿer

oder gleih zwei herleiten. Dies stelle ih im zweiten Kapitel ebenfalls dar.

In der Ho�nung, den o�en geblieben Fall des sehs-dimensionalen Raumes mit

b1 = 1 beantworten zu können, habe ih mih dem Studium von Solvmannigfal-

tigkeiten zugewendet, welhes den Inhalt des dritten Kapitels bildet.

Nilmannigfaltigkeiten stellen eine reihhaltige Quelle symplektisher Mannig-

faltigkeiten, die niht Kählersh sind, dar. Tatsählih ist eine Nilmannigfaltigkeit

genau dann formal, wenn sie ein Torus ist. (Und genau in diesem Fall trägt sie

auh eine Kähler-Struktur.) M. a. W. ist jede symplektishe niht-torale Nil-

mannigfaltigkeit niht formal. Nilmannigfaltigkeiten helfen bei der Suhe nah

einer Mannigfaltigkeit mit b1 = 1 jedoh niht weiter, da b1 für sie immer grö-

ÿer als eins ist. Der Begri� der Solvmannigfaltigkeit ist eine Verallgemeinerung

desjenigen der Nilmannigfaltigkeit. Eine Solvmannigfaltigkeit ist ein kompakter

Quotient aus einer zusammenhängenden und einfah-zusammenhängenden auf-

lösbaren Liegruppe nah einer diskreten Untergruppe, und solhe können auh

erste Betti-Zahl gleih eins haben. Es ershien mir daher natürlih, unter den

Solvmannigfaltigkeiten nah einem Beispiel einer niht-formalen symplektishen

sehs-Mannigfaltigkeit mit b1 = 1 zu suhen.

In diesem Zusammenhang habe ih dann auh versuht, die bisher bekann-

te Klassi�kation niedrig-dimensionaler Solvmannigfaltigkeiten bis zur Dimension

sehs zu erweitern und den Aspekt der Formaltität hinzuzufügen.

Im sehs-dimensionalen Fall habe ih mih auf die Betrahtung von symplek-

tishen Räumen beshränkt und unter diesen eine niht-formale Mannigfaltigkeit

mit b1 = 1 gefunden.

Neben der Formalität und der Tatsahe, daÿ die Betti-Zahlen ungeraden

Grades gerade sind, erfüllen kompakte Kähler-Mannigfaltigkeiten die sog. star-

ke Lefshetz-Bedingung. Bezeihnet ω eine symplektishe Form auf einer 2n-
dimensionalen kompakten Mannigfaltigkeit M , so lautet die starke Lefshetz-

Bedingung, daÿ das Cup-Produkt mit [ω]k für alle k ∈ {0, . . . , n − 1} einen

Isomorphismus Hn−k(M,R) → Hn+k(M,R) de�niert.
Zum Abshluÿ von Kapitel 3 gehe ih der Frage nah, welhe Kombinationen

der drei genannten Eigenshaften für symplektishe Solvmannigfaltigkeiten erfüllt

bzw. niht erfüllt sein können und beantworte zwei Fragen, die in der Arbeit [47℄

von R. Ibáñez, Y. Rudiak, A. Tralle und L. Ugarte o�en geblieben waren.

St. Halperin nennt in [37℄ ein Ergebnis, das die Berehnung der höheren Ho-

motopiegruppen einer gewissen Klasse von Räumen, die die der nilpotenten um-

shlieÿt, mittels der Theorie der minimalen Modelle ermögliht. Den Nahweis

dessen, der in [37℄ niht dargestellt ist, werde ih im vierten Kaitel dieser Arbeit

erbringen.

Sehr herzlih danke ih Herrn Prof. H. Geiges für die Möglihkeit, diese Arbeit

unter seiner Anleitung zu shreiben. Ih habe von vielen anregenden Gesprähen
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und wertvollen Hinweisen, die mir halfen, neue Aspekte zu berüksihtigen, pro-

�tiert. Seine Unterstützung, die Möglihkeit, ihm jederzeit Fragen zu stellen, und

der gewährte Freiraum bei der Erstellung dieser Arbeit haben einen maÿgeblihen

Anteil an ihr.

Mein weiterer Dank gilt meinem Diplomvater Herrn Prof. Dr. W. Henke, der

mih die Mathematik gelehrt und die Begeisterung für sie in mir gewekt hat.

Köln, im Dezember 2008 Christoph Bok
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Abstrat

Topology of sympleti manifolds is nowadays a subjet of intensive development.

The simplest examples of suh manifolds are Kähler manifolds and an important

property of the latter is their formality. Thus, a possible way of onstruting

sympleti manifolds with no Kähler struture is to �nd suh ones whih are not

formal.

M. Fernández und V. Muñoz onsidered in [28℄ the question of the geography

of non-formal ompat manifolds. Given (m, b1) ∈ N+ ×N, they showed whether

or not there are m-dimensional non-formal ompat manifolds with �rst Betti

number b1.
The aim of this thesis is to answer the same question for ompat sympleti

manifolds. After setting the sene in the �rst hapter, this is done in the seond

one � exept for the six-dimensional ase with b1 = 1. The third hapter deals

with solvmanifolds, espeially with those of dimension less or equal to six, beause

I hoped to �nd the missing example among them, and in fat there is a six-

dimensional sympleti solvmanifolds whih is non-formal and satis�es b1 = 1.
Besides formality, ompat Kähler manifolds have even odd-degree Betti num-

bers and they satisfy the so-alled Hard Lefshetz ondition. To end Chapter 3, I

deal with relations between this three properties for sympleti solvmanifolds. I

am able to give an answer to two questions that had remained open in the artile

[47℄ of R. Ibáñez, Y. Rudiak, A. Tralle and L. Ugarte.

Furthermore, in the last hapter I prove a result that allows an easy ompu-

tation of the higher homotopy groups of a lass of spaes ontaining all nilpotent

ones. Without giving a proof, St. Halperin stated it in the introdution of [37℄.

I would like to express my sinere gratitude to my supervisor Prof. H. Geiges

for giving me the possibility to partiipate in his group and to write this thesis

under his guidane. I have pro�ted greatly from his suggestions and various on-

versations with him. Without his kind support this dissertation would not have

been written.

Moreover, I wish to thank Prof. Dr. W. Henke who was the supervisor of my

diploma thesis. He taught me mathematis and woke up the enthusiasm for it.

Köln, Deember 2008 Christoph Bok
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Chapter 1

Introdution

The aim of this hapter is to introdue formal manifolds and to quote some of their

properties. (Throughout this thesis a manifold is assumed to have no boundary,

i.e. a ompat manifold is the same as a losed manifold.) Given a manifold

M , one an onsider the omplex of its di�erential forms (Ω(M), d), whih has

the struture of a so-alled di�erential graded algebra. Suh di�erential graded

algebras are the main objets of rational homotopy theory, and the de�nition

of the formality of M will purely depend on rational homotopi properties of

(Ω(M), d).

The idea of rational homotopy is to ignore the torsion in standard homotopy

theory. Sullivan [71℄ showed in the 1960s that not only the simpliial homology

H∗(X,Z) and the higher homotopy groups πi(X), i > 1, of a simply-onneted

spae X an be loalised to H∗(X,Q) and πi(X) ⊗ Q. It is also possible to

geometrially loalise the spae X to a spae X0 via a ontinuous map X → X0

whih indues isomorphisms H∗(X,Q) → H∗(X0,Z) and πi(X) ⊗ Q → πi(X0).
The rational homotopy type of X is then de�ned as the weak homotopy type of

X0. A prinipal feature of rational homotopy theory, as developed by Quillen

[65℄, is that the geometri loalisation X0 an be understood within an entirely

algebrai ategory. This led to Sullivan's hoie [72℄ of a partiular algebrai

ategory that models exatly the rational homotopy type of a spae. It is to this

ategory � the ategory of minimal di�erential graded algebras � that we turn

now.

1.1 Di�erential graded algebras and formality

Let K be a �eld of harateristi zero. A di�erential graded algebra (DGA) is a

graded K-algebra A =
⊕

i∈N Ai
together with a K-linear map d : A → A suh

that d(Ai) ⊂ Ai+1
and the following onditions are satis�ed:

(i) The K-algebra struture of A is given by an inlusion K →֒ A0
.

1



2 CHAPTER 1. INTRODUCTION

(ii) The multipliation is graded ommutative, i.e. for a ∈ Ai
and b ∈ Aj

one

has a · b = (−1)i·jb · a ∈ Ai+j
.

(iii) The Leibniz rule holds: ∀a∈Ai∀b∈A d(a · b) = d(a) · b+ (−1)ia · d(b)

(iv) The map d is a di�erential, i.e. d2 = 0.

Further, we de�ne |a| := i for a ∈ Ai
.

The i-th ohomology of a DGA (A, d) is the algebra

H i(A, d) :=
ker(d : Ai → Ai+1)

im(d : Ai−1 → Ai)
.

If (B, dB) is another DGA, then a K-linear map f : A → B is alled mor-

phism if f(Ai) ⊂ Bi
, f is multipliative, and dB ◦ f = f ◦ dA. Obviously, any

suh f indues a homomorphism f ∗ : H∗(A, dA) → H∗(B, dB). A morphism of

di�erential graded algebras induing an isomorphism on ohomology is alled

quasi-isomorphism.

De�nition 1.1.1. A DGA (M, d) is said to be minimal if

(i) there is a graded vetor spae V =
(⊕

i∈N+
V i
)
= Span {ak | k ∈ I} with

homogeneous elements ak, whih we all the generators,

(ii) M =
∧
V ,

(iii) the index set I is well ordered, suh that k < l ⇒ |ak| ≤ |al| and the

expression for dak ontains only generators al with l < k.

We shall say that (M, d) is a minimal model for a di�erential graded al-

gebra (A, dA) if (M, d) is minimal and there is a quasi-isomorphism of DGAs

ρ : (M, d) → (A, dA), i.e. ρ indues an isomorphism ρ∗ : H∗(M, d) → H∗(A, dA)
on ohomology.

The importane of minimalmodels is re�eted by the following theorem, whih

is taken from Sullivan's work [72, Setion 5℄.

Theorem 1.1.2. A di�erential graded algebra (A, dA) with H
0(A, dA) = K pos-

sesses a minimal model. It is unique up to isomorphism of di�erential graded

algebras.

We quote the existene-part of Sullivan's proof, whih gives an expliit on-

strution of the minimal model. Whenever we are going to onstrut suh a

model for a given algebra in this thesis, we will do it as we do it in this proof.

Proof of the existene. We need the following algebrai operations to �add�

resp. �kill� ohomology.
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Let (M, d) be a DGA. We �add� ohomology by hoosing a new generator x
and setting

M̃ := M⊗
∧

(x), d̃|M = d, d̃(x) = 0,

and �kill� a ohomology lass [z] ∈ Hk(M, d) by hoosing a new generator y of

degree k − 1 and setting

M̃ := M⊗
∧

(y), d̃|M = d, d̃(y) = z.

Note that z is a polynomial in the generators of M.

Now, let (A, dA) a DGA with H0(A, dA) = K. We set M0 := K, d0 := 0 and

ρ0(x) = x.
Suppose now ρk : (Mk, dk) → (A, dA) has been onstruted so that ρk indues

isomorphisms on ohomology in degrees ≤ k and a monomorphism in degree

(k + 1).
�Add� ohomology in degree (k + 1) to get a morphism of di�erential graded

algebras ρ(k+1),0 : (M(k+1),0, d(k+1),0) → (A, dA) whih indues an isomorphism

ρ∗(k+1),0 on ohomology in degrees ≤ (k + 1). Now, we want to make the indued

map ρ∗(k+1),0 injetive on ohomology in degree (k + 2) .

We �kill� the kernel on ohomology in degree (k+2) (by non-losed generators

of degree (k+1)) and de�ne ρ(k+1),1 : (M(k+1),1, d(k+1),1) → (A, dA) aordingly.
If there are generators of degree one in (M(k+1),0, d(k+1),0) it is possible that this
killing proess generates new kernel on ohomology in degree (k+2). Therefore,
we may have to �kill� the kernel in degree (k + 2) repeatedly.

We end up with a morphism ρ(k+1),∞ : (M(k+1),∞, d(k+1),∞) → (A, dA) whih
indues isomorphisms on ohomology in degrees ≤ (k+1) and a monomorphism

in degree (k + 2). Set ρk+1 := ρ(k+1),∞ and (Mk+1, dk+1) := (M(k+1),∞, d(k+1),∞).
Indutively we get the minimal model ρ : (M, d) → (A, dA). �

A minimal model (MM , d) of a onneted smooth manifold M is a minimal

model for the de Rahm omplex (Ω(M), d) of di�erential forms on M . Note that

this implies that (MM , d) is an algebra over R. The last theorem implies that

every onneted smooth manifold possesses a minimal model whih is unique up

to isomorphism of di�erential graded algebras.

For a ertain lass of spaes that inludes all nilpotent (and hene all simply-

onneted) spaes, we an read o� the non-torsion part of the homotopy from the

generators of the minimal model. We point the interested reader to Chapter 4.

Exept in Chapter 4, we are from now on just onsidering di�erential graded

algebras over the �eld K = R.

For the remainder of this setion, we deal with the notion of formality. En-

dowed with the trivial di�erential, the ohomology of a minimal DGA is a DGA

itself, and therefore it also possesses a minimal model. In general, these two

minimal models need not to be isomorphi.
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A minimal di�erential graded algebra (M, d) is alled formal if there is a

morphism of di�erential graded algebras

ψ : (M, d) −→ (H∗(M, d), dH = 0)

that indues the identity on ohomology.

This means that (M, d) and (H∗(M, d), dH = 0) share their minimal model.

The following theorem gives an equivalent haraterisation.

Theorem 1.1.3 ([63, Theorem 1.3.1℄). A minimal model (M, d) is formal if

and only if we an write M =
∧
V and the spae V deomposes as a diret sum

V = C⊕N with d(C) = 0, d is injetive on N , and suh that every losed element

in the ideal I(N) generated by N in

∧
V is exat. �

This allows us to give a weaker version of the notion of formality.

De�nition 1.1.4. A minimal model (M, d) is alled s-formal, s ∈ N, if we an
write M =

∧
V and for eah i ≤ s the spae V i

generated by generators of

degree i deomposes as a diret sum V i = C i ⊕N i
with d(C i) = 0, d is injetive

on N i
and suh that every losed element in the ideal I(

⊕
i≤sN

i) generated by⊕
i≤sN

i
in

∧(⊕
i≤s V

i
)
is exat in

∧
V .

Obviously, formality implies s-formality for every s.
The following theorem is an immediate onsequene of the last de�nition.

Theorem 1.1.5. Let (M, d) be a minimal model, where M =
∧
V , V = C ⊕N

with d(C) = 0 and d is injetive on N .

Assume that there exist r, s ∈ N+, n ∈ N r
and x ∈ ∧

(⊕
i≤s V

i
)
suh that

holds

∀c∈Cr (n + c) x is losed and not exat.

Then (M, d) is not max{r, s}-formal. �

A onneted smooth manifold is alled formal (resp. s-formal) if its minimal

model is formal (resp. s-formal).

Example ([63, p. 20℄). Any ompat Riemannian symmetri spae is formal. �

We end this setion with some results that allow an easier detetion of for-

mality resp. non-formality. The next theorem shows the reason for de�ning s-
formality: in ertain ases s-formality is su�ient for a manifold to be formal.

Theorem 1.1.6 ([27, Theorem 3.1℄). Let M be a onneted and orientable om-

pat smooth manifold of dimension 2n or (2n− 1).
Then M is formal if and only if it is (n− 1)-formal. �
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Example ([27, Corollary 3.3℄).

(i) Every onneted and simply-onneted ompat smooth manifold is 2-for-
mal.

(ii) Every onneted and simply-onneted ompat smooth manifold of dimen-

sion seven or eight is formal if and only if it is 3-formal. �

Proposition 1.1.7 ([27, Lemma 2.11℄). Let M1,M2 be onneted smooth mani-

folds. They are both formal (resp. s-formal) if and only if M1 ×M2 is formal

(resp. s-formal). �

1.2 Massey produts

An important tool for deteting non-formality is the onept of Massey produts:

As we shall see below, the triviality of the Massey produts is neessary for

formality.

Let (A, d) be a di�erential graded algebra.

(i) Let ai ∈ Hpi(A, d), pi > 0, 1 ≤ i ≤ 3, satisfying aj · aj+1 = 0 for j = 1, 2.
Take elements αi of A with ai = [αi] and write αj ·αj+1 = dξj,j+1 for j = 1, 2.
The (triple-)Massey produt 〈a1, a2, a3〉 of the lasses ai is de�ned as

[α1 · ξ2,3 + (−1)p1+1ξ1,2 · α3] ∈
Hp1+p2+p3−1(A, d)

a1 ·Hp2+p3−1(A, d) +Hp1+p2−1(A, d) · a3
.

(ii) Now, let k ≥ 4 and ai ∈ Hpi(A, d), pi > 0, 1 ≤ i ≤ k, suh that

〈a1, . . . , ak−1〉 and 〈a2, . . . , ak〉 are de�ned and vanish simultaneously, i.e.

there are elements ξi,j of A, 1 ≤ i ≤ j ≤ k, (i, j) 6= (1, k), suh that

ai = [ξi,i] and dξi,j =

j−1∑

l=i

ξi,l · ξl+1,j, (1.1)

where ξ = (−1)|ξ|ξ. The Massey produt 〈a1, . . . , ak〉 of the lasses ai is
de�ned as the set {[∑k−1

l=1 ξ1,l · ξl+1,k] | ξi,j satis�es (1.1)}. This is a subset

of Hp1+...+pk−(k−2)(A, d).

We say that 〈a1, . . . , ak〉 vanishes if 0 ∈ 〈a1, . . . , ak〉.

Remark. The de�nition of the triple-Massey produt in (i) as an element of a

quotient spae is well de�ned, see e.g. [63, Setion 1.6℄.

The next two lemmata show the relation between formality (resp. s-formality)

and Massey produts.
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Lemma 1.2.1 ([63, Theorem 1.6.5℄). For any formal minimal di�erential graded

algebra all Massey produts vanish. �

Lemma 1.2.2 ([27, Lemma 2.9℄). Let (A, d) be an s-formal minimal di�erential
graded algebra. Suppose that there are ohomology lasses ai ∈ Hpi(A, d), pi > 0,
1 ≤ i ≤ k, suh that 〈a1, . . . , ak〉 is de�ned. If p1 + . . . + pk−1 ≤ s + k − 2 and

p2 + . . .+ pk ≤ s+ k − 2, then 〈a1, . . . , ak〉 vanishes. �

In [29℄, Fernández and Muñoz introdue a di�erent type of Massey produt,

alled G-Massey produt:

De�nition 1.2.3. Let (A, d) be a DGA and let a, b1, b2, b3 ∈ H2(A, d) satisfying
a · bi = 0 for i = 1, 2, 3. Take hoies of representatives a = [α], bi = [βi] and
α · βi = dξi for i = 1, 2, 3. Then the G-Massey produt 〈a; b1, b2, b3〉 is de�ned as

[ξ1 · ξ2 · β3 + ξ2 · ξ3 · β1 + ξ3 · ξ1 · β2] in
H8(A, d)

〈b1, a, b2〉 ·H3(A, d) + 〈b1, a, b3〉 ·H3(A, d) + 〈b2, a, b3〉 ·H3(A, d)
.

Lemma 1.2.4 ([29, Proposition 3.2℄). If a minimal di�erential graded algebra is

formal, then every G-Massey produt vanishes. �

Corollary 1.2.5. If the de Rahm omplex (Ω(M), d) of a smooth manifold M
possesses a non-vanishing Massey or G-Massey produt, then M is not formal.

If there are ohomology lasses ai ∈ Hpi(M,R) (pi > 0, 1 ≤ i ≤ k) with

p1 + . . . + pk−1 ≤ s + k − 2 and p2 + . . . + pk ≤ s + k − 2 suh that 〈a1, . . . , ak〉
does not vanish, then M is not s-formal.

Proof. This holds sine a minimal model ρ : (MM , d) → (Ω(M), d) indues
an isomorphism on ohomology. �

1.3 Geography of non-formal manifolds

Fernández and Muñoz onsidered in [28℄ the geography of non-formal ompat

manifolds. This means they examined whether there are non-formal ompat

manifolds of a given dimension with a given �rst Betti number. They obtained

the following theorem:

Theorem 1.3.1. Given m ∈ N+ and b ∈ N, there are ompat oriented m-

dimensional smooth manifolds with b1 = b whih are non-formal if and only if

one of the following onditions holds:

(i) m ≥ 3 and b ≥ 2,

(ii) m ≥ 5 and b = 1,

(iii) m ≥ 7 and b = 0. �
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A natural question to ask is when there are non-formal ompat sympleti or

ontat manifolds as in the last theorem. Parts of this question will be answered

in the next hapter.
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Chapter 2

Geography of Non-Formal

Sympleti and Contat Manifolds

In this hapter we want to onstrut non-formal sympleti and ontat m-

manifolds. If b denotes the �rst Betti number, then the pair (m, b) must satisfy
one of the onditions (i), (ii) or (iii) of Theorem 1.3.1. Unfortunately, we shall not

�nd examples for all possible pairs (m, b). But we will be able to prove that the

geography of even-dimensional ompat manifolds oinides with that of ompat

sympleti manifolds.

2.1 Sympleti, Kähler and Lefshetz manifolds

The main examples of formal spaes are Kähler manifolds. By de�nition, a Kähler

manifold possesses a Riemannian, a sympleti and a omplex struture that are

ompatible in a sense we are going to explain now.

Reall that a sympleti manifold is a pair (M,ω), where M is a (2n)-dimen-

sional smooth manifold and ω ∈ Ω2(M) is a losed 2-form on M suh that ω is

non-degenerate, i.e. wn
p 6= 0 for all p ∈ M .

De�nition 2.1.1.

(i) An almost omplex struture on an even-dimensional smooth manifold M
is a omplex struture J on the tangent bundle TM .

(ii) Let M , J be as in (i) and ω ∈ Ω2(M) a non-degenerate 2-form on M. The

2-form ω is alled ompatible with J if the bilinear form 〈. . . , . . .〉 given by

∀p∈M ∀v,w∈TpM 〈v, w〉 = ω(v, Jw)

de�nes a Riemannian metri on M .

9
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(iii) An almost omplex struture J on M as in (i) is alled integrable if there

exists an atlas AM on M suh that

∀u∈AM
∀p∈Domain(u) dpu ◦ Jp = J0 ◦ dpu : TpM → R2n,

where

J0 =

(
0 −Id
Id 0

)
.

J is alled omplex struture for M .

(iv) AKähler manifold is a sympleti manifold (M,ω) with a omplex struture

J on M suh that ω is ompatible with J .

If one wants to show that a given almost omplex struture is not integrable,

it may be hard to disprove the ondition (iii) of the last de�nition. But in [60℄,

Newlander and Nirenberg proved their famous result that an almost omplex

struture J on a smooth manifold M is integrable if and only if NJ ≡ 0, where
the Nijenhuis tensor NJ is de�ned as

NJ(X, Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X, Y ]

for all vetor �elds X, Y on M .

For a time, it was not lear whether every sympleti manifold was not in fat

Kählerian. Meanwhile, many examples of non-Kählerian sympleti manifolds are

known. The �rst suh was given by Thurston in 1976 � the so-alled Kodaira-

Thurston manifold, see [73℄.

The di�ulty to prove non-existene of any Kähler struture is obvious. Nowa-

days, two easily veri�able neessary onditions for Kähler manifolds are known.

First, we have the main theorem from the work [16℄ of Deligne, Gri�ths, Morgan

and Sullivan.

Theorem 2.1.2 ([16, p. 270℄). Compat Kähler manifolds are formal. �

In order to prove that his manifold is not Kählerian, Thurston used another

method. His manifold has �rst Betti number equal to three and the Hodge

deomposition for Kähler manifolds implies that its odd degree Betti numbers

have to be even, see e.g. [36, pp. 116 and 117℄. This is even satis�ed for every

Hard Lefshetz manifold.

We say that a sympleti manifold (M2n, ω) is Lefshetz if the homomorphism

Lk : Hn−k(M,R) −→ Hn+k(M,R)
[α] 7−→ [α ∧ ωk]

is surjetive for k = n− 1. If Lk
is surjetive for k ∈ {0, . . . , n− 1}, then (M,ω)

is alled Hard Lefshetz .
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Note that for ompat M the surjetivity of Lk
implies its injetivity.

Obviously, the Lefshetz property depends on the hoie of the sympleti

form. It may be possible that a smooth manifold M possesses two sympleti

forms ω1, ω2 suh that (M,ω1) is Lefshetz and (M,ω2) not. But as mentioned

above, the existene of suh an ω1 has the following onsequene that is purely

topologial.

Theorem 2.1.3. The odd degree Betti numbers of a Hard Lefshetz manifold are

even.

Proof. Let (M2n, ω) be a sympleti manifold satisfying the Lefshetz prop-

erty. We us the same idea as in [36, p. 123℄. For eah i ∈ {0, . . . , n− 1} one has

a non-degenerated skew-symmetri bilinear form

H2i+1(M,R)×H2i+1(M,R) −→ R,
([α], [β]) 7−→ [α ∧ β ∧ ωn−2i−1]

i.e. H2i+1(M,R) must be even-dimensional. �

Obviously, this also proves the next orollary.

Corollary 2.1.4. The �rst Betti number of a Lefshetz manifold is even. �

Finally, the following shows that the statement of the last theorem holds for

Kähler manifolds:

Theorem 2.1.5 ([36, p. 122℄). Compat Kähler manifolds are Hard Lefshetz. �

The aim of the next setions is to prove the following theorems:

Theorem 2.1.6. For all m ∈ 2N, m ≥ 4 and b ∈ N, b ≥ 2, there are ompat

m-dimensional sympleti manifolds with b1 = b whih are non-formal.

Theorem 2.1.7. For all m ∈ 2N, m ≥ 6, there are ompat m-dimensional

sympleti manifolds with b1 = 1 whih are non-formal.

Theorem 2.1.8. For all m ∈ 2N, m ≥ 8, there are simply-onneted ompat

m-dimensional sympleti manifolds whih are non-formal.

These three theorems and Theorem 1.3.1 imply:

Theorem 2.1.9. Let (m, b) ∈ 2N+×N. If there is a non-formal ompat oriented
m-dimensional manifold with b1 = b, there is also a sympleti manifold with these
properties. �
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2.2 Donaldson submanifolds

Our examples of non-formal sympleti manifolds will be onstruted in a similar

way as in the artile [27℄ of Fernández and Muñoz. The examples will be Don-

aldson submanifolds of non-formal sympleti manifolds. Therefore, we quote in

this setion parts of [27℄.

Note, for the remainder of the hapter we denote the de Rham ohomology

of a smooth manifold M by H∗(M).
In [20℄ the following is proven: Let (M,ω) be a 2n-dimensional ompat sym-

pleti manifold with [ω] ∈ H2(M) admitting a lift to an integral ohomology

lass. (Without loss of generality, the latter an always be assumed, see [34,

Observation 4.3℄.) Then there exists k0 ∈ N+ suh that for eah k ∈ N+ with

k ≥ k0 there is a sympleti submanifold j : Z →֒ M of dimension 2n− 2 whose

Poinaré dual satis�es PD[Z] = k[ω]. Moreover, the map j is a homology (n−1)-
equivalene in the following sense.

Let f : M1 → M2 be a smooth map between smooth manifolds. f is alled

homology s-equivalene, s ∈ N, if it indues isomorphisms f ∗ : H i(M2) → H i(M1)
on ohomology for i ≤ s− 1 and a monomorphism for i = s.

A sympleti submanifold j : Z →֒ M as above is alled sympleti divisor or

Donaldson submanifold .

Conerning minimal models and formality in this ontext, we quote the fol-

lowing results. Part (i) resp. (ii) in the theorem oinides with Proposition 5.1
resp. Theorem 5.2 (i) in [27℄, where a proof is given.

Theorem 2.2.1 ([27℄). Let f : M1 → M2 be a homology s-equivalene between

onneted smooth manifolds. Denote by ρi : (
∧
Vi, d) → (Ω(Mi), d) the minimal

models of Mi for i = 1, 2.

(i) There exist a morphism F : (
∧
V ≤s
2 , d) → (

∧
V ≤s
1 , d) of di�erential graded

algebras suh that F : V <s
2 → V <s

1 is an isomorphism, F : V s
2 → V s

1 is a

monomorphism and ρ∗1 ◦ F ∗ = f ∗ ◦ ρ∗2.

(ii) If M2 is (s− 1)-formal, then M1 is (s− 1)-formal. �

Corollary 2.2.2 ([27, Theorem 5.2(ii)℄). Let M be a 2n-dimensional ompat
sympleti manifold and j : Z →֒ M a Donaldson submanifold.

Then for eah s ≤ n− 2, we have: If M is s-formal, then Z is s-formal.
In partiular, Z is formal if M is (n− 2)-formal. �

Next, we want to give a riterion for a Donaldson submanifold not to be

formal.

Proposition 2.2.3. Let M be a ompat sympleti manifold of dimension

2n, where n ≥ 3. Using the notation from page 5, we suppose that there are



2.2. DONALDSON SUBMANIFOLDS 13

ohomology lasses ai = [αi] ∈ H1(M), 1 ≤ i ≤ 3, suh that the (triple-)Massey

produt

〈a1, a2, a3〉 = [α1 ∧ ξ2,3 + ξ1,2 ∧ α3] ∈
H2(M)

a1 ∪H1(M) +H1(M) ∪ a3
is de�ned and does not vanish.

Then every Donaldson submanifold of M is not 1-formal.

Proof. Let j : Z →֒ M be a Donaldson submanifold. Sine n ≥ 3, j is a

homology 2-equivalene. This implies that the (triple-)Massey produt

〈j∗a1, j∗a2, j∗a3〉 = [j∗α1 ∧ j∗ξ2,3 + j∗ξ1,2 ∧ j∗α3] ∈
H2(Z)

j∗a1 ∪H1(Z) +H1(Z) ∪ j∗a3
is de�ned and does not vanish. Now, Corollary 1.2.5 implies that Z is not 1-
formal. �

As an immediate onsequene of the proposition we get:

Corollary 2.2.4. Let Z1, . . . , Zk,M be ompat sympleti manifolds and assume

that Zi →֒ Zi+1 and Zk →֒ M are Donaldson submanifolds for i = 1, . . . , k − 1.
We suppose that there are ohomology lasses ai = [αi] ∈ H1(M), 1 ≤ i ≤ 3, suh
that the (triple-)Massey produt

〈a1, a2, a3〉 = [α1 ∧ ξ2,3 + ξ1,2 ∧ α3] ∈
H2(M)

a1 ∪H1(M) +H1(M) ∪ a3
is de�ned and does not vanish.

If dimZ1 ≥ 4, then Z1 is not 1-formal. �

The next lemma will be needed in the proof of Theorem 2.1.7. The proof is

taken word by word from the proof of Formula (5) in [27℄. Note that we denote

the map [ω] ∪ . . . : Hp(M) → Hp+2(M) by [ω] : Hp(M) → Hp+2(M).

Lemma 2.2.5. Let (M,ω) be a 2n-dimensional ompat sympleti manifold and
j : Z →֒M a Donaldson submanifold.

Then for eah p = 2(n− 1)− i, 0 ≤ i ≤ (n− 2), there is a monomorphism

Hp(M)

ker([ω] : Hp(M) → Hp+2(M))
−→ Hp(Z).

Proof. The laim an be seen via Poinaré duality. Let 0 ≤ i ≤ (n − 2),
p = 2(n− 1)− i and α ∈ Ωp(M) be losed. Then we have

j∗[α] = 0 ⇐⇒ ∀b∈Hi(Z) j
∗[α] ∪ b = 0.
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Sine i ≤ (n − 2), we know that there is an isomorphism j∗ : H i(M)
≃→ H i(Z),

thus we an assume that for eah b ∈ H i(Z) there is a losed i-form β onM with

[β|Z ] = j∗[β] = b and get

j∗[α] ∪ j∗[β] =
∫

Z

j∗α ∧ j∗β =

∫

M

α ∧ β ∧ kω,

sine [Z] = PD[kω] for k ∈ N+. Therefore, we have

j∗[α] = 0 ⇐⇒ ∀[β]∈Hi(M) [α ∧ ω] ∪ [β] = 0 ⇐⇒ [α ∧ ω] = 0,

from where the lemma follows. �

2.3 Known examples

In this and in the next but one setion we make use of some basi results on

nilmanifolds. Readers who are not familiar with this notion should read pages 22

up to 24 of Setion 3.1 �rst.

2.3.1 The manifolds M(p,q)

The following examples are taken from [13℄.

Let R be a ring with 1. For p ∈ N+ let H(1, p;R) be the set

{




Ip x z
0 1 y
0 0 1


 | x, z ∈ Rp ∧ y ∈ R}.

We write H(1, p) for H(1, p;R). Clearly, this is a nilpotent Lie group and the

2p+ 1 di�erential 1-forms

αi := dxi, β := dy, γi := dzi − xi dy, 1 ≤ i ≤ p,

form a basis of the left-invariant 1-forms. Obviously, we have dαi = dβ = 0 and

dγi = −αi ∧ β.
Further, let q ∈ N+. We set G(p, q) := H(1, p) × H(1, q). Again, this is a

Lie group and analogous as above, we denote the 2p + 2q + 2 forms whih form

a basis of the left-invariant 1-forms by

α1, . . . , αp, β, γ1, . . . , γp, α̃1, . . . , α̃q, β̃, γ̃1, . . . , γ̃q.

An easy omputation shows that the 2-form

ω :=

p∑

i=1

αi ∧ γi +
q∑

i=1

α̃i ∧ γ̃i + β ∧ β̃
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is a left-invariant sympleti form. Therefore M(p, q) := G(p, q)/Γ(p, q), where
Γ(p, q) := H(1, p;Z) × H(1, q;Z), is a ompat sympleti nilmanifold of di-

mension 2p + 2q + 2. From Theorem 3.1.5 below we get the minimal model

ρ :
(
MM(p,q), d

)
→
(
Ω(M(p, q)), d

)
as

MM(p,q) =
∧
(a1, . . . , ap, b, c1, . . . , cp, ã1, . . . , ãq, b̃, c̃1, . . . , c̃q),

|ai| = |b| = |ci| = |ãi| = |b̃| = |c̃i| = 1,

dai = db = dãi = db̃ = 0, dci = −aib, dc̃i = −ãib̃,
ρ(ai) = αi, ρ(b) = β, ρ(ci) = γi, ρ(ãi) = α̃i, ρ(b̃) = β̃, ρ(c̃i) = γ̃i.

Therefore, we see b1(M(p, q)) = p+ q + 2.

Proposition 2.3.1 ([13℄). M(p, q) is not formal.

Proof. 〈[β], [αi], [αi]〉 is a non-vanishing Massey produt. �

Using Theorem 3.1.5 again, one omputes the �rst ohomology groups of

M(p, q) as

H0(M(p, q)) = 〈1〉,
H1(M(p, q)) = 〈[αi], [β], [α̃k], [β̃] | 1 ≤ i ≤ p, 1 ≤ k ≤ q〉,
H2(M(p, q)) = 〈[αi ∧ γj], [αi ∧ α̃k], [αi ∧ β̃], [β ∧ γj], [β ∧ α̃l], [β ∧ β̃],

[α̃k ∧ γ̃l], [β̃ ∧ γ̃l] | 1 ≤ i, j ≤ p, 1 ≤ k, l ≤ q〉.

2.3.2 The manifold M8,0

Fernández and Muñoz onstruted in [29℄ an 8-dimensional non-3-formal ompat

sympleti manifold (M8,0, ω) with

b0(M8,0) = b8(M8,0) = 1, b1(M8,0) = b7(M8,0) = 0,

b2(M8,0) = b6(M8,0) = 256, b3(M8,0) = b5(M8,0) = 0, b4(M8,0) = 269
(2.1)

as desingularisation of an orbifold. The latter is a Z3-quotient of a nilmanifold.

The non-formality is proved by regarding the G-Massey produt 〈[ϑ]; [τ1], [τ2], [τ3]〉
for ertain losed 2-forms ϑ, τi on M8,0: One has 〈[ϑ]; [τ1], [τ2], [τ3]〉 = λ [ω4] for
λ 6= 0. Clearly, λω4

is not exat, and sine b3(M8,0) = 0, it follows from De�nition

1.2.3 that this G-Massey produt does not vanish.
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2.4 Proofs

Proof of Theorem 2.1.6

Beause produts with �nitely many opies of S2
give the higher-dimensional

examples, it is enough to prove that for every b ≥ 2 there is a non-formal ompat

sympleti 4-manifold M with b1(M) = b.

Examples for b ∈ {2, 3} were given in [24℄. We shall see them in the proofs of

Theorems 2.5.5 and 3.6.2 below.

Now let b ≥ 4 and hoose p, q ∈ N+ suh that p+ q+2 = b. Then M(p, q) has
dimension 2p + 2q + 2 ≥ 6 and is a non-formal ompat sympleti nilmanifold

with b1(M(p, q)) = b whih satis�es the assumption of Corollary 2.2.4. Therefore,

we get the required non-formal 4-manifold Z with b1(Z) = b1(M(p, q)) = b. �

Proof of Theorem 2.1.7

Sine diret produts with �nitely many opies of S2
gives the higher-dimensional

ones, it is enough to �nd a six-dimensional example. This will be onstruted in

Theorem 3.8.3.2 below.

But using the ideas from above, one an onstrut an eight dimensional ex-

ample as follows:

Gompf has shown in [34℄ that there is a ompat sympleti 4-manifold M4,1

with b1(M4,1) = 1. By Proposition 1.1.7, M12,1 := M8,0 × M4,1 is a ompat

sympleti 12-manifold whih is not 3-formal. Clearly, we have b1(M12,1) = 1.
Denote the projetions by π : M12,1 → M8,0, p : M12,1 →M4,1 and the sympleti

forms ofM8,0,M4,1 andM12,1 by ω, σ and Ω = π∗ω+p∗σ. Let ϑ, τi be the 2-forms

of Setion 2.3.2. We mentioned 〈[ϑ]; [τ1], [τ2], [τ3]〉 = λ [ω4] 6= 0.
Let j : Z10,1 →֒ M12,1 be a Donaldson submanifold. The 10-form

Ω ∧ λ π∗ω4 = (π∗ω + p∗σ) ∧ λ π∗ω4 = λ p∗σ ∧ π∗ω4

on M12,1 does not represent the zero lass in

H10(M12,1)
(2.1)
= (〈[σ2]〉 ⊗H6(M8,0))⊕ (H2(M4,1)⊗H8(M8,0)).

Therefore, we get from Lemma 2.2.5: λ j∗π∗[ω4] ∈ H8(Z10,1)\{0}. From (2.1) we

know H5(M8,0) = 0. Hene 〈[j∗π∗τk], [j
∗π∗ϑ], [j∗π∗τl]〉 = 0 for 1 ≤ k, l ≤ 3. So in

the following G-Massey produt there is no indeterminay:

〈[j∗π∗ϑ]; [j∗π∗τ1], [j
∗π∗τ2], [j

∗π∗τ3]〉 = λ j∗π∗[ω4] 6= 0

It follows that Z10,1 is not formal. The fat that dimZ10,1 = 10 and b1(Z10,1) = 1
is lear by the remarks in Setion 2.2.
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Now, let j̃ : Z8,1 →֒ Z10,1 be a Donaldson submanifold. Then the 10-form
j∗Ω ∧ λ j∗π∗ω4

on Z10,1 does not represent the zero lass in H10(Z10,1), for we
have

Ω2 ∧ π∗ω4 = (p∗σ + π∗ω) ∧ (p∗σ ∧ π∗ω4) = 2 p∗σ2 ∧ π∗ω4 6= 0,

and by Lemma 2.2.5 we get [j∗(Ω ∧ π∗ω4)] 6= 0.
Again we use Lemma 2.2.5 to see λ j̃∗j∗π∗[ω4] ∈ H8(Z8,1)\{0} and an prove

similarly as for Z10,1 that Z8,1 is not formal. Moreover, Z8,1 is 8-dimensional and

has �rst Betti number equal to one. �

Remark. A Donaldson submanifold Z6,1 of the manifold Z8,1 that we have on-

struted in the last proof is formal: From the 2-formality of M12,1 =M8,0 ×M4,1

it follows that Z6,1 is 2-formal and therefore formal by Theorem 1.1.6.

Proof of Theorem 2.1.8

M8,0 is the eight dimensional example and the higher-dimensional examples are

obtained by the taking produt of M8,0 with �nitely many opies of S2
. �

2.5 Contat manifolds

We would like to end this hapter with a question that arises naturally one with

have proved Theorem 2.1.9:

For whih pairs (m, b) with m odd an we �nd a non-formal ompat ontat

m-manifold with b1 = b?
Reall that a ontat manifold is a pair (M, ξ = kerα), where M is a smooth

(2n+1)-manifoldM and α ∈ Ω1(M) a 1-form with αp∧(dα)p
n 6= 0 for all p ∈M .

The hyperplane �eld ξ is alled a ontat struture; the 1-form α a ontat form

on M .

Theorem 2.5.1. For eah pair (m, b) with m ≥ 3 odd and b ≥ 2 there exists a

non-formal ompat ontat m-manifold with b1 = b.

The remainder of the hapter is devoted to the proof of this theorem.

Our starting point is a non-formal sympleti manifold. Boothby and Wang

proved that there is a ontat manifold whih �bres over it with �bre a irle.

Theorem 2.5.2 ([6, Theorem 3℄). If (M,ω) is a ompat sympleti manifold

whose sympleti form determines an integral ohomology lass of M , then the

prinipal irle bundle π : E →M with �rst Chern lass c1(π) = [ω] ∈ H2(M,Z)
admits a onnetion 1-form α suh that π∗ω = dα and α is a ontat form on

E. �

Let E,M be as in the last theorem. Sine E is an S1
-bundle over M , one an

apply the Gysin sequene to obtain b1(E) = b1(M). If dimM ≥ 4, we an even

�nd a ontat manifold whih has the same fundamental group as M :
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Corollary 2.5.3. Let (M,ω) be a ompat sympleti manifold of dimension

2n ≥ 4 whose sympleti form determines an integral ohomology lass.

Then there is a sympleti form ω′
on M#CP n

determining an integer oho-

mology lass, a ompat ontat manifold (E, kerα′), and a prinipal irle bundle
π : E → M#CP n

with �rst Chern lass c1(π) = [ω′] suh that the fundamental

groups satisfy π1(E) = π1(M#CP n) = π1(M).

Proof. We use the same argumentation as in the proof of [34, Theorem 4.4℄.

After blowing up a point in M , we an obtain a manifold M ′ := M#CP n
with

a sympleti form ω′
suh that [ω′] = [ω] + εe ∈ H2(M ′) = H2(M) ⊕H2(CP n),

where ε ∈ 1
N+

and e is a generator of H∗(CP n). Without loss of generality,

we an assume that ω′
determines an integral ohomology lass and there is an

embedded sphere S ⊂ M ′ = M#CP n
suh that

∫
S
ω′ = 1. (Sine

∫
S
ω′

depends

on the size of the ball removed from M in the blow-up, we may have to enlarge

ω by an integer sale �rst.) Let π : E → M ′
with c1(π) = [ω′] as in Theorem

2.5.2. Then the restrition of the �bration π to S is the Hopf �bration, i.e.

π−1(S) = S3
and the middle map in the following part of the homotopy sequene

is an isomorphism:

{0} = π2(π
−1(S)) −→ π2(S) −→ π1(S

1) −→ π1(π
−1(S)) = {1}.

π2(S) → π1(S
1) is an isomorphism. From S ⊂M ′

we get in the following part of

the homotopy sequene of the �bration π that the �rst map is surjetive:

π2(M
′) −→ π1(S

1) −→ π1(E) −→ π1(M
′) −→ π0(S

1) = {1}.

This yields an isomorphism π∗ : π1(E) → π1(M
′) = π1(M). �

Under ertain onditions we an show that the ontat manifold that we have

just onstruted is not formal.

Proposition 2.5.4. Let (M,ω) be a ompat sympleti manifold of dimension

2n ≥ 4 whose sympleti form determines an integral ohomology lass. Further,

suppose that there are ohomology lasses ai ∈ H1(M), 1 ≤ i ≤ 3, suh that

〈a1, a2, a3〉 is a non-vanishing Massey produt in M .

Then the manifold E of Corollary 2.5.3 is not formal.

Proof. Let π : E → M ′ := M#CP n
be as in Corollary 2.5.3 and the non-

vanishing Massey produt 〈a1, a2, a3〉 be de�ned by a 2-form α1 · ξ2,3 + ξ1,2 · α3.

(Here we use the notation from page 5.) We show:

π∗ : H1(M ′) −→ H1(E) is an isomorphism, (2.2)

H2(M) ∩ ker
(
π∗ : H2(M ′) → H2(E)

)
= {0}. (2.3)

Then π∗α1 · π∗ξ2,3 + π∗ξ1,2 · π∗α3 de�nes the non-vanishing Massey produt



2.5. CONTACT MANIFOLDS 19

〈π∗a1, π
∗a2, π

∗a3〉 ∈ π∗(H2(M ′)
)

π∗a1 · π∗
(
H1(M ′)

)
+ π∗

(
H1(M ′)

)
· π∗a3

⊂ H2(E)

π∗a1 ·H1(E) +H1(E) · π∗a3
,

so E is not formal.

[Assume 〈π∗a1, π
∗a2, π

∗a3〉 vanishes. Then for j = 1, 2 there exists a lass

[Ξj,j+1] ∈ H1(E) suh that 0 = dΞj,j+1 = π∗αj ·π∗αj+1. Property (2.2) implies the

existene of [ξj,j+1] ∈ H1(M ′) with 0 = dπ∗ξj,j+1 = π∗αj · π∗αj+1 for j = 1, 2, i.e.
αj ·αj+1 is exat by (2.3) and 〈[α1], [α2], [α3]〉 vanishes, whih is a ontradition.℄

It remains to show (2.2) and (2.3): Consider the Gysin sequene of π.

{0} −→ H1(M ′)
π∗

−→ H1(E) −→ H0(M ′)
[ω′]∪−→ H2(M ′)

π∗

−→ H2(E) −→ . . . (2.4)

[ω′]∪ : H0(M ′) → H2(M ′) is injetive. Therefore, π∗ : H1(M ′) → H1(E) is an
isomorphism, i.e. (2.2) holds.

Further, we get ker
(
π∗ : H2(M ′) → H2(E)

) (2.4)
= R[ω′]. Denote

pr2 : H
2(M ′) = H2(M)⊕H2(CP n) −→ H2(CP n)

the projetion onto the seond fator. Sine ω′
is the sympleti form of the

blow-up of M , we have pr2([ω
′]) 6= 0. But pr2|H2(M) = 0, so (2.3) follows. �

Using the preparations that we have done, we are able to onstrut expliit

non-formal ontat manifolds.

Theorem 2.5.5. For eah n ∈ N with n ≥ 2 and b ∈ {2, 3} there exists a ompat
ontat (2n+ 1)-manifold whih is not formal.

Proof. In [24℄ the following manifolds are studied. Let Mb, b ∈ {2, 3} be the

four dimensional nilmanifold with basis of left-invariant 1-forms {α, β, γ, η} suh

that

dα = dβ = 0,

dγ = α ∧ β,

dη =

{
α ∧ γ : b = 2
0 : b = 3

}
.

Then, b1(Mb) = b, the 2-form α ∧ η + β ∧ γ is a sympleti form for Mb, and

〈[β], [β], [α]〉 = −[β ∧ γ] is a non-vanishing Massey produt. Again, one an

assume that the sympleti form determines an integral ohomology lass. The

ase n = 2 now follows from Proposition 2.5.4. For n > 2 onsider the manifolds

Mb × (S2)n−2
instead of Mb. �



20 CHAPTER 2. SYMPLECTIC AND CONTACT MANIFOLDS

Remark. The manifold M3 in the last proof is the Kodaira-Thurston manifold

that we mentioned at the beginning of this hapter.

Theorem 2.5.6. For eah b ∈ N with b ≥ 2, there are non-formal ompat

ontat manifolds of dimension 3 and 5 with �rst Betti number b1 = b.

Proof. By Theorem 1.3.1, we know that there is a ompat oriented 3-manifold

M with b1 = b ≥ 2 whih is non-formal. By theorems of Martinet [52℄ and Geiges

[33, Proposition 2℄ M and M × S2
admit ontat strutures. Further, it follows

from Proposition 1.1.7 that M × S2
is not formal. �

Now, Theorem 2.5.1 follows from Theorems 2.5.5, 2.5.6, Proposition 1.1.7 and

the following result of Bourgeois:

Theorem 2.5.7 ([8℄). Let M be a ompat ontat manifold of dimension greater

than or equal to three.

Then M × T 2
admits a ontat struture. �



Chapter 3

Solvmanifolds

In this hapter we want to study ompat homogeneous spaes G/Γ, where G is

a onneted and simply-onneted Lie group and Γ a disrete subgroup in G. It
is well known that the existene of suh a Γ implies the unimodularity of the Lie

group G. Reall that a Lie group G is alled unimodular if for all X ∈ g holds

tr adX = 0, where g denotes the Lie algebra of G.
If we further demand G/Γ to be sympleti (when G is even-dimensional), a

result of Chu [12℄ shows that G has to be solvable.

Therefore, we regard ompat quotients of onneted and simply-onneted

solvable Lie groups by disrete subgroups, so alled solvmanifolds.

First, we reall the de�nition of nilpotent and solvable groups resp. Lie alge-

bras.

(i) Let G be group and denote its neutral element by e. We de�ne the de-

rived series (D(k)G)k∈N, desending series (G(k))k∈N and asending series

(G(k))k∈N of subgroups in G indutively as follows:

D(0)G := G(0) := G,

D(k)G := [D(k−1)G,D(k−1)G], G(k) := [G,G(k−1)],

G(0) = {e}, G(k) := {g ∈ G | [g,G] ⊂ G(k−1)}.

G is alled nilpotent if there exists k0 ∈ N suh that G(k0) = {e}.
G is alled solvable if there exists k0 ∈ N suh that D(k0)G = {e}.

(ii) Given a Lie algebra g, one de�nes the derived, desending and asending

series of subalgebras in g via

D(0)g := g(0) := g,

D(k)g := [D(k−1)g, D(k−1)g], g(k) := [g, g(k−1)],

g(0) = {0}, g(k) := {X ∈ g | [X, g] ⊂ g(k−1)}
and alls g nilpotent resp. solvable if its asending resp. derived series be-

omes trivial for k0 large enough.

21
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We ollet some properties in the following proposition. The parts whih are

not obvious an be found in [76, Setion 3.18℄.

Proposition 3.0.1.

(i) The subgroups arising in the derived, desending and asending series of

a group are normal. Moreover, they are losed and simply-onneted Lie

subgroups in the ase of a onneted and simply-onneted Lie group.

(ii) The subalgebras arising in the derived, desending and asending series of

a Lie algebra are ideals.

(iii) A Lie group is nilpotent resp. solvable if and only if its Lie algebra is nilpo-

tent resp. solvable. �

3.1 Nilmanifolds

We give a brief review of known results about a speial kind of solvmanifolds,

namely nilmanifolds. For the study non-formal sympleti manifolds, nilmani-

folds form one of the best lasses. On the one hand, the non-toral nilmanifolds

introdue a geometrial omplexity, while on the other hand their homotopy the-

ory is still amenable to study. In partiular, their minimal models are very easy

to alulate and we shall see that eah non-toral nilmanifold is non-formal.

A nilmanifold is a ompat homogeneous spae G/Γ, where G is a onneted

and simply-onneted nilpotent Lie group and Γ a lattie in G, i.e. a disrete

o-ompat subgroup.

Example. Every lattie in the abelian Lie group Rn
is isomorphi to Zn

. The

orresponding nilmanifold is the n-dimensional torus. �

In ontrast to arbitrary solvable Lie groups, there is an easy riterion for

nilpotent ones whih enables one to deide whether there is a lattie or not.

Reall that the exponential map exp : g → G of a onneted and simply-

onneted nilpotent Lie group is a di�eomorphism. We denote its inverse by

log : G→ g.

Theorem 3.1.1 ([66, Theorem 2.12℄). A simply-onneted nilpotent Lie group G

admits a lattie if and only if there exists a basis {X1, . . . , Xn} of the Lie algebra

g of G suh that the struture onstants Ck
ij arising in the brakets

[Xi, Xj] =
∑

k

Ck
ij Xk

are rational numbers.

More preisely we have:
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(i) Let g have a basis with respet to whih the struture onstants are rational.

Let gQ be the vetor spae over Q spanned by this basis.

Then, if L is any lattie of maximal rank in g ontained in gQ, the group

generated by exp(L) is a lattie in G.

(ii) If Γ is a lattie in G, then the Z-span of log(Γ) is a lattie L of maximal

rank in the vetor spae g suh that the struture onstants of g with respet

to any basis ontained in L belong to Q. �

For a given lattie Γ in a onneted and simply-onneted nilpotent Lie group

G, the subset log(Γ) need not to be an additive subgroup of the Lie algebra g.

Example. Consider the nilpotent Lie group G := {




1 x z
0 1 y
0 0 1


 | x, y, z ∈ R}.

Its Lie algebra is g := {




0 x z
0 0 y
0 0 0


 | x, y, z ∈ R}, and the logarithm is given

by

log(




0 x z
0 0 y
0 0 0


) =




1 x z − xy
2

0 1 y
0 0 1


 .

The set of integer matries ontained in G forms a lattie Γ in G and

log(Γ) = {




0 a c
0 0 b
0 0 0


 | a, b ∈ Z, (ab ≡ 0(2) ⇒ c ∈ Z), (ab ≡ 1(2) ⇒ c ∈ 1

2
Z)}

is not a subgroup of g.

If Γ is a lattie suh that log(Γ) is a subgroup of the Lie algebra, we all Γ a

lattie subgroup.

Note that in the ontext of general Lie groups the name �lattie subgroup�

has a di�erent meaning, namely that G/Γ has a �nite invariant measure. For

nilpotent groups and disrete Γ, the latter is the same as to require that Γ is a

lattie.

Theorem 3.1.2 ([14, Theorem 5.4.2℄). Let Γ be a lattie in a onneted and

simply-onneted nilpotent Lie group.

(i) Γ ontains a lattie subgroup of �nite index.

(ii) Γ is ontained as a subgroup of �nite index in a lattie subgroup. �

For later uses, we quote the following two results.
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Proposition 3.1.3 ([14, Lemma 5.1.4 (a)℄). Let G be a loally ompat group,

H a losed normal subgroup and Γ a disrete subgroup of G. Moreover, denote

by π : G→ G/H the natural map.

If Γ ∩ H is a lattie in H, and Γ is a lattie in G, then π(Γ) is a lattie in

G/H and ΓH = HΓ is a losed subgroup of G. �

Theorem 3.1.4 ([14, p. 208℄). Let G be a onneted and simply-onneted nilpo-

tent Lie group with lattie Γ and k ∈ N.
Then Γ∩D(k)G, Γ∩G(k)

resp. Γ∩G(k) are latties in D
(k)G, G(k)

resp. G(k).

Note, G(1) is the enter Z(G) of G. �

We have seen that it is easy to deide if there is a lattie in a given onneted

and simply-onneted nilpotent Lie group, i.e. if it indues a nilmanifold. More-

over, nilmanifolds have very nie properties whih will be desribed now. Below,

we shall see that these properties are not satis�ed for general solvmanifolds.

Note that we an assoiate a DGA to eah Lie algebra g as follows:

Let {X1, . . . , Xn} be a basis of g and denote by {x1, . . . , xn} the dual basis

of g∗. The Chevalley-Eilenberg omplex of g is the di�erential graded algebra

(
∧

g∗, δ) with δ given by

δ(xk) = −
∑

i<j

Ck
ij xi ∧ xj ,

where Ck
ij are the struture onstants of {X1, . . . , Xn}.

Theorem 3.1.5 ([61℄, [63, Theorem 2.1.3℄). Let G/Γ be a nilmanifold and denote

by Ωl.i.(G) the vetor spae of left-invariant di�erential forms on G.
Then the natural inlusion Ωl.i.(G) → Ω(G/Γ) indues an isomorphism on

ohomology.

Moreover, the minimal model of G/Γ is isomorphi to the Chevalley-Eilenberg

omplex of the Lie algebra of G. �

Corollary 3.1.6. Any nilmanifold satis�es b1 ≥ 2.

Proof. Let g be a nilpotent Lie algebra. By [78, Theorem 7.4.1℄ we have

H1(
∧

g∗, δ) ∼= g/[g, g]. By [18℄ any nilpotent Lie algebra g satis�es the inequality

dim g/[g, g] ≥ 2 whih then implies b1(g) ≥ 2. Hene the laim follows from the

preeding theorem. �

We now quote some results that show that it is easy to deide whether a

nilmanifold is formal, Kählerian or Hard Lefshetz.

Theorem 3.1.7 ([39, Theorem 1℄). A nilmanifold is formal if and only if it is a

torus. �

Theorem 3.1.8 ([63, Theorem 2.2.2℄). If a nilmanifold is Kählerian, then it is

a torus. �
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This theorem follows from Theorem 3.1.7. Another proof was given by Benson

and Gordon in [4℄. In fat they proved the following:

Theorem 3.1.9 ([4, pp. 514 et seq.℄). A sympleti non-toral nilmanifold is not

Lefshetz. �

Corollary 3.1.10. A sympleti nilmanifold is Hard Lefshetz if and only if it

is a torus, independent of the speial hoie of the sympleti form. �

3.2 Solvmanifolds in general

A solvmanifold is a ompat homogeneous spae G/Γ, where G is a onneted

and simply-onneted solvable Lie group and Γ a lattie in G, i.e. a disrete

o-ompat subgroup.

Remark. It is important to note that there is a more general notion of solvmani-

fold, namely a ompat quotient of a onneted and simply-onneted solvable

Lie group by a (possibly non-disrete) losed Lie subgroup (see [2℄), but we are

only onsidering solvmanifolds as in the last de�nition. Sometimes, suh are

alled speial solvmanifolds in the literature.

By [63, Theorem 2.3.11℄, a solvmanifold in our sense is neessary parallelisable.

E.g. the Klein bottle (whih an be written as ompat homogeneous spae of a

three-dimensional onneted and simply-onneted solvable Lie group) is not a

solvmanifold overed by our de�nition.

Obviously, every nilmanifold is also a solvmanifold. But most solvmanifolds

are not di�eomorphi to nilmanifolds: Every onneted and simply onneted

solvable Lie group is di�eomorphi to Rm
(see e.g. [76℄), hene solvmanifolds are

aspherial and their fundamental group is isomorphi to the onsidered lattie.

Eah lattie in a nilpotent Lie group must be nilpotent. But in general, latties in

solvable Lie group are not nilpotent and therefore the orresponding solvmanifolds

are not nilmanifolds.

The fundamental group plays an important role in the study of solvmanifolds.

Theorem 3.2.1 ([66, Theorem 3.6℄). Let Gi/Γi be solvmanifolds for i ∈ {1, 2}
and ϕ : Γ1 → Γ2 an isomorphism.

Then there exists a di�eomorphism Φ: G1 → G2 suh that

(i) Φ|Γ1
= ϕ,

(ii) ∀γ∈Γ1
∀p∈G1

Φ(pγ) = Φ(p)ϕ(γ). �

Corollary 3.2.2. Two solvmanifolds with isomorphi fundamental groups are

di�eomorphi. �
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The study of solvmanifolds meets with notieably greater obstales than the

study of nilmanifolds. Even the onstrution of solvmanifolds is onsiderably

more di�ult than is the ase for nilmanifolds. The reason is that there is no

simple riterion for the existene of a lattie in a onneted and simply-onneted

solvable Lie group.

We shall quote some neessary riteria.

Proposition 3.2.3 ([53, Lemma 6.2℄). If a onneted and simply-onneted solv-

able Lie group admits a lattie then it is unimodular. �

Theorem 3.2.4 ([55℄,[63, Theorem 3.1.2℄). Let G/Γ be a solvmanifold that is not

a nilmanifold and denote by N the nilradial of G.
Then ΓN := Γ ∩ N is a lattie in N, ΓN = NΓ is a losed subgroup in G

and G/(NΓ) is a torus. Therefore, G/Γ an be naturally �bred over a non-trivial

torus with a nilmanifold as �ber:

N/ΓN = (NΓ)/Γ −→ G/Γ −→ G/(NΓ) = T k

This bundle will be alled the Mostow bundle. �

Remark.

(i) The struture group ation of the Mostow bundle is given by left transla-

tions

NΓ/Γ0 ×NΓ/Γ −→ NΓ/Γ,

where Γ0 is the largest normal subgroup of Γ whih is normal in NΓ. (A

proof of the topologial version of this fat an be found in [70, Theorem

I.8.15℄. The proof for the smooth ategory is analogous.)

(ii) A non-toral nilmanifold G/Γ �bers over a non-trivial torus with �bre a

nilmanifold, too, sine Γ ∩ [G,G] resp. im
(
Γ → G/[G,G]

)
are latties in

[G,G] resp. G/[G,G], see above.

In view of Theorem 3.2.4, we are interested in properties of the nilradial of a

solvable Lie group. The following proposition was �rst proved in [56℄. Sine the

paper is written in Russian and the author of this thesis does not speak Russian,

it is possible that the proof below is the same as in [56℄.

Proposition 3.2.5. Let G be a solvable Lie group and N its nilradial.

Then dimN ≥ 1
2
dimG.

Proof. Denote by n ⊂ g the Lie algebras of N ⊂ G and by nC ⊂ gC their

omplexi�ations. Note that gC is solvable with nilradial nC, so from [76, Corol-

lary 3.8.4℄ it follows that nC = {X ∈ gC | ad(X)|[gC,gC] nilpotent}. Therefore, sine
ad: gC → Aut([gC, gC]) is a representation of gC in [gC, gC], by Lie's theorem
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(e.g. [76, Theorem 3.7.3℄) there exist λ1, . . . , λk ∈ g∗C suh that nC =
⋂k

i=1 ker λi,
where k := dimC[gC, gC].

A straightforward alulation shows dimC

⋂k
i=1 ker λi ≥ dimC gC − k, so we

have proven: dimC nC ≥ dimC gC − dimC[gC, gC].
Beause gC is solvable, we get by [76, Corollary 3.8.4℄ that [gC, gC] ⊂ nC and

hene dimC nC ≥ dimC gC − dimC nC, i.e.

2 dimC nC ≥ dimC gC.

The proposition now follows from dimR g = dimC gC and dimR n = dimC nC. �

In some ases, we will be able to apply the next theorem to the situation of

Theorem 3.2.4. It then gives a su�ient ondition for the Mostow bundle to be

a prinipal bundle.

Theorem 3.2.6. Let G be a onneted and simply-onneted solvable Lie group

and Γ a lattie in G. Suppose that {e} 6= H & G is a losed normal abelian Lie

subgroup of G with H ⊂ N(Γ), the normalizer of Γ. (For example the latter is

satis�ed if H is entral.) Assume further that ΓH := Γ ∩H is a lattie in H.

Then H/ΓH = HΓ/Γ is a torus and

H/ΓH −→ G/Γ −→ G/HΓ (3.1)

is a prinipal torus bundle over a solvmanifold.

Proof. By assumption, H is a losed normal abelian subgroup of G and ΓH is

a lattie in H . We have for h1γ1, h2γ2 ∈ HΓ with hi ∈ H , γi ∈ Γ the equivalene

(h1γ1)
−1(h2γ2) ∈ Γ ⇐⇒ h−1

1 h2 ∈ ΓH ,

i.e. H/ΓH = HΓ/Γ. Therefore, Proposition 3.1.3 implies that (3.1) is a �bre

bundle whose �bre is learly a torus and its base a solvmanifold. The struture

group ation is given by the left translations

HΓ/Γ0 ×HΓ/Γ −→ HΓ/Γ,

where Γ0 is the largest normal subgroup of Γ whih is normal in HΓ. (This

an be seen analogous as in Remark (i) on page 26.) Sine H is ontained in

N(Γ) = {g ∈ G | gΓg−1 = Γ}, we have for eah h ∈ H and γ, γ0 ∈ Γ

(hγ)γ0(hγ)
−1 = hγγ0γ

−1h−1 ∈ hΓh−1 = Γ,

i.e. Γ = Γ0 and the theorem follows. �

We have seen that the Chevalley-Eilenberg omplex assoiated to a nilmani-

fold is its minimal model. In this respet, arbitrary solvmanifolds di�er in an

essential way from nilmanifolds. However, in the speial ase of a solvmanifold

whih is the quotient of ompletely solvable Lie group, one has an aess to the

minimal model.
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De�nition 3.2.7. Let G be a Lie group with Lie algebra g.

(i) G and g are alled ompletely solvable if the linear map adX : g → g has

only real roots

1

for all X ∈ g.

(ii) If G is simply-onneted and exp : g → G is a di�eomorphism, then G is

alled exponential and the inverse of exp is denoted by log : G→ g.

Remark. In the literature a onneted and simply-onneted Lie group is some-

times alled exponential if the exponential map is surjetive. This is weaker than

our de�nition.

A nilpotent Lie group or algebra is ompletely solvable, and it is easy to see

that ompletely solvable Lie groups or algebras are solvable. Moreover, the two

propositions below show that simply-onneted ompletely solvable Lie groups

are exponential, and exponential Lie groups are solvable. Note that the seond

proposition is simply a reformulation of results of Sait� and Dixmier.

Proposition 3.2.8 ([64, Theorem 2.6.3℄). Any exponential Lie group is solv-

able. �

Proposition 3.2.9. A onneted and simply-onneted solvable Lie group G with

Lie algebra g is exponential if and only if the linear map adX : g → g has no

purely imaginary roots for all X ∈ g.

Proof. Let G be a solvable Lie group. By [67, Théorème II.1℄, adX has

no purely imaginary roots for all X ∈ g if and only if the exponential map is

surjetive. If this is the ase, [67, Théorème I.1℄ implies that the exponential

map is even bijetive. For solvable Lie groups, the statement �(1

◦
) ⇔ (2

◦
)� of

[19, Théorème 3℄ says that this is equivalent to the exponential map being a

di�eomorphism. �

Let a lattie in a onneted and simply-onneted solvable Lie group be given.

Then Theorem 3.2.4 stated that its intersetion with the nilradial is a lattie in

the nilradial. In the ase of ompletely solvable Lie groups, we have an analogue

for the ommutator.

Proposition 3.2.10 ([35, Proposition 1℄). Let G be a onneted and simply-

onneted ompletely solvable Lie group and Γ a lattie in G.
Then [Γ,Γ] is a lattie in [G,G]. In partiular, Γ ∩ [G,G] is a lattie in

[G,G]. �

We formulate the result that enables us to ompute the minimal model of

solvmanifolds whih are built by dividing a lattie out of a ompletely solvable

group. The main part of the next theorem is due to Hattori [44℄.

1

By a root of a linear map, we mean a (possibly non-real) root of the harateristi polyno-

mial.
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Theorem 3.2.11. Let G/Γ be a solvmanifold. Denote by (
∧

g∗, δ) the Chevalley-
Eilenberg omplex of G and reall that g∗ is the set of left-invariant di�erential

1-forms on G. Then the following holds:

(i) The natural inlusion (
∧
g∗, δ) → (Ω(G/Γ), d) indues an injetion on o-

homology.

(ii) If G is ompletely solvable, then the inlusion in (i) is a quasi-isomorphism,

i.e. it indues an isomorphism on ohomology. Therefore, the minimal

model MG/Γ is isomorphi to the minimal model of the Chevalley-Eilenberg

omplex.

(iii) If Ad (Γ) and Ad (G) have the same Zariski losures

2

, then the inlusion

in (i) is a quasi-isomorphism. �

Proof. (i) is [63, Theorem 3.2.10℄ and (iii) is [66, Corollary 7.29℄.

ad (ii): Denote the mentioned inlusion by i : (
∧
g∗, δ) → (Ω(G/Γ), d). By

Hattori's Theorem (see [63, p. 77℄), this is a quasi-isomorphism. It remains

to show that the minimal model ρ : (MCE, δCE) → (
∧

g∗, δ) of (
∧
g∗, δ) is the

minimal model of (Ω(G/Γ), d). Sine the minimal model is unique and the map

i ◦ ρ : (MCE, δCE) → (Ω(G/Γ), d) is a quasi-isomorphism, this is obvious. �

There are examples where the inlusion in (i) in the last theorem is not a

quasi-isomorphism: Consider the Lie group G whih is R3
as a manifold and

whose Lie group struture is given by

(s, a, b) · (t, x, y) = (s+ t, cos(2πt) a− sin(2πt) b+ x, sin(2πt) a+ cos(2πt) b+ y).

G is not ompletely solvable and one alulates for its Lie algebra b1(g) = 1. G
ontains the abelian lattie Γ := Z3

and G/Γ is the 3-torus whih has b1 = 3.

We have seen in the last setion that the �rst Betti number of a nilmanifold is

greater than or equal to two. For arbitrary solvmanifolds this is no longer true.

Below, we shall see various examples of solvmanifolds with b1 = 1. The following
orollary shows that b1 = 0 annot arise.

Corollary 3.2.12. Any solvmanifold satis�es b1 ≥ 1.

Proof. Let g be a solvable Lie algebra. As in the nilpotent ase we have

b1(
∧
g∗, δ) = dim g/[g, g], and dim g/[g, g] ≥ 1 by solvability. The laim now

follows from Theorem 3.2.11 (i). �

2

A basis for the Zariski topology on GL(m,C) is given by the sets

Up := GL(m,C) \ p−1({0}),

where p : GL(m,C) ∼= C(m2) → C ranges over polynomials.
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To end this setion, we shortly disuss the existene problem for Kähler stru-

tures on solvmanifolds. The only Kählerian nilmanifolds are tori, but in the gen-

eral ontext we have the hyperellipti surfaes, whih are non-toral Kählerian

solvmanifolds, see Setion 3.6 below. ([63, Theorem 3.4.1℄ states the only Kähle-

rian solvmanifolds in dimension four are tori. This is not orret, as �rst noted by

Hasegawa in [42℄.) Benson and Gordon [5℄ onjetured in 1990 that the existene
of a Kähler struture on a solvmanifold G/Γ with G ompletely solvable fores

G/Γ to be toral and this is true. In fat, Hasegawa proved in the �rst half of this

deade the following:

Theorem 3.2.13 ([42℄). A solvmanifold G/Γ is Kählerian if and only if it is a

�nite quotient of a omplex torus whih has a struture of a omplex torus bundle

over a omplex torus.

If G is ompletely solvable, then G/Γ is Kählerian if and only if it is a omplex

torus. �

In later setions we shall see that neither the Hard Lefshetz property nor

formality is su�ient for an even-dimensional solvmanifold to be Kählerian.

3.3 Semidiret produts

In later setions we shall try to examine low-dimensional solvmanifolds. Con-

erning this, a �rst step is to use the known lassi�ation of the (onneted and

simply-onneted) low-dimensional solvable Lie groups. Most of them have the

struture of semidiret produts. In order to de�ne this notion, we reall the

onstrution of the Lie group struture of the group of Lie group automorphisms

of a simply-onneted Lie group in the following theorem. It ollets results that

an be found in [77, pp. 117 et seq.℄.

Theorem 3.3.1.

(i) Let h =
(
|h| = Rh, [. . . , . . .]

)
be an h-dimensional Lie algebra. Then the

set A(h) of Lie algebra isomorphisms of h is a losed Lie subgroup of the

automorphism group Aut(|h|) of the h-dimensional vetor spae |h|. The

Lie algebra of A(h) is

d(h) = {ϕ ∈ End(|h|) |ϕ derivation with respet to [. . . , . . .]}.

(ii) Let H be a onneted and simply-onneted Lie group with neutral element

e and Lie algebra h. The Lie group struture of A(H), the group of Lie

group automorphisms of H, is given by the following group isomorphism:

A(H) −→ A(h) , f 7−→ def.
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Moreover, if H is exponential, its inverse is the map

A(h) −→ A(H) , ϕ 7−→ expH ◦ϕ ◦ logH .

�

For given (Lie) groups G,H and a (smooth) ation µ : G×H → H by (Lie)

group automorphisms, one de�nes the semidiret produt of G and H via µ as

the (Lie) group G⋉µH with underlying set (manifold)G×H and group struture

de�ned as follows:

∀(g1,h1),(g2,h2)∈G×H (g1, h1)(g2, h2) =
(
g1g2, µ(g

−1
2 , h1)h2

)

Note that for (g, h) ∈ G⋉µ H we have (g, h)−1 =
(
g−1, µ(g, h−1)

)
.

If the ation µ is trivial, i.e. ∀g∈G, h∈H µ(g, h) = h, one obtains the ordinary

diret produt. In the ase of Lie groups G and H , the exponential map expG×H

is known to be the diret produt of expG
and expH

. If the ation is not trivial,

the situation beomes a little more ompliated:

Theorem 3.3.2. Let G,H be onneted Lie groups and µ : G×H → H a smooth

ation by Lie group automorphisms. Denote the Lie algebras of G and H by

g and h and let φ := (deGµ1) : g → d(h), where µ1 : G → A(h) is given by

µ1(g) = deHµ(g, . . .) = AdG⋉µH
g .

(i) The Lie algebra of G⋉µ H is g⋉φ h. This Lie algebra is alled semidiret

produt of g and h via φ. Its underlying vetor spae is g×h and the braket

for (X1, Y1), (X2, Y2) ∈ g× h is given by

[(X1, Y1), (X2, Y2)] =
(
[X1, X2]g, [Y1, Y2]h + φ(X1)(Y2)− φ(X2)(Y1)

)
.

In the sequel we shall identify X ≡ (X, 0) and Y ≡ (0, Y ).

(ii) For (X, Y ) ∈ g ⋉φ h one has expG⋉µH((X, Y )) = (expG(X), γ(1)), where
γ : R → H is the solution of

γ̇(t) = (deHRγ(t))
(
expA(h)(−t ad(X)|h)(Y )

)
, γ(0) = eH .

Here Ra denotes the right translation by an element a ∈ H.

Proof. The proof of (i) an be found in [76℄. We give a proof of (ii). Given a

Lie group homomorphism f between Lie groups, we denote its di�erential at the

neutral element by f∗.
For (g0, h0), (g, h) ∈ G ⋉µ H we have R(g0,h0)(g, h) = (Rg0(g), Rh0

(µ(g−1
0 , h)),

and this yields for (X, Y ) ∈ g⋉φ h

(R(g0,h0))∗
(
(X, Y )

)
=
(
(Rg0)∗(X), (Rh0

)∗
(
µ1(g

−1
0 )(Y )

))
.
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Sine

(
γ1(t), γ2(t)

)
:= expG⋉µH

(
t (X, Y )

)
is the integral urve through the iden-

tity of both the right- and left-invariant vetor �elds assoiated to (X, Y ), the
last equation implies that

(
γ1(t), γ2(t)

)
is the solution of the following di�erential

equations:

γ1(0) = eG, γ̇1(t) = (Rγ1(t))∗(X), (3.2)

γ2(0) = eH , γ̇2(t) = (Rγ2(t))∗(µ1(γ1(−t))(Y )). (3.3)

γ1(t) = expG(tX) is the solution of (3.2), and this implies

µ1(γ1(−t)) = Ad
G⋉µH
γ1(−t) |h = expA(h)(−t ad(X)|h),

i.e. (3.3) is equivalent to γ2(0) = eH , γ̇2(t) = (Rγ2(t))∗(exp
A(h)(−t ad(X)|h)(Y )).

So the theorem is proven. �

A onneted and simply-onneted solvable Lie group G with nilradial N is

alled almost nilpotent if it an be written as G = R ⋉µ N . Moreover, if N is

abelian, i.e. N = Rn
, then G is alled almost abelian.

Let G = R⋉µ N be an almost nilpotent Lie group. Sine N has odimension

one in G, we an onsider µ as a one-parameter group R → A(N). By Theorem

3.3.1, there exists ϕ ∈ d(n) with

∀t∈R µ(t) = expN ◦ expAut(|n|)(tϕ) ◦ logN .

Choosing a basis of |n|, we an identify Aut(|n|) with a subset of gl(n,R) and get

∀t∈R de

(
µ(t)

)
∈ expGL(n,R)

(
gl(n,R)

)
.

Note, if N is abelian, the exponential map expN : n → N is the identity. These

onsiderations make it interesting to examine the image of expGL(n,R)
.

Theorem 3.3.3 ([62, Theorem 6℄). M is an element of expGL(n,R)(gl(n,R)) if and
only if the real Jordan form ofM ontains in the form of pairs the bloks belonging

to real negative eigenvalues λ−i , whenever there exist real negative eigenvalues λ
−
i

of M . I.e. the blok belonging to suh a λ−i is of the following form

ni⊕

j=1

(
Jnij

0
0 Jnij

)

with

Jnij
=




λ−i 1 0

λ−i
.

.

.

.

.

. 1
0 λ−i


 ∈ M(nij , nij ;R).

�
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We are now going to derive some fats that follow from the existene of a

lattie in an almost nilpotent Lie group.

Theorem 3.3.4 ([74℄). Let G = R ⋉µ N be an almost nilpotent and ompletely

solvable Lie group ontaining a lattie Γ.
Then there is a one-parameter group ν : R → A(N) suh that ν(k) preserves

the lattie ΓN := Γ ∩ N for all k ∈ Z. Γ is isomorphi to Z ⋉ν ΓN and G/Γ is

di�eomorphi to

(
R⋉ν N

)
/
(
Z ⋉ν ΓN

)
.

Moreover, there are t1 ∈ R\{0} and an inner automorphism In1
∈ A(N) suh

that ν(1) = µ(t1) ◦ In1
.

Proof. We know that ΓN is a lattie in N and im(Γ → G/N) ∼= Γ/ΓN is a

lattie in G/N ∼= R. Therefore, Γ/ΓN
∼= Z is free, and by Proposition C.2 the

following exat sequene is split:

{1} −→ ΓN −→ Γ −→ Z −→ {0},

i.e. there is a group-theoreti setion s : Z → Γ. [67, Théorème II.5℄ states that a

group homomorphism from a lattie of ompletely solvable Lie group into another

ompletely solvable Lie group uniquely extends to a Lie group homomorphism of

the Lie groups. Hene, s extends uniquely to a one-parameter group s : R → G.
Therefore,

ν : R −→ A(N), ν(t)(n) = s(t) · n · s(t)−1,

is a one-parameter group with ∀k∈Z ν(k)(ΓN) = ΓN , the lattie Γ is isomorphi

to Z⋉ν ΓN by Proposition C.7 and G/Γ is di�eomorphi to

(
R⋉νN

)
/
(
Z⋉ν ΓN

)
.

Let γ1 := s(1) ∈ (Γ \ ΓN) ⊂ R ⋉µ N . There are unique t1 ∈ R \ {0}, n1 ∈ N
with γ1 = t1 ·n1, where we identify t1 ≡ (t1, eN) ∈ G and n1 ≡ (0, n1) ∈ G. Sine
G = R ⋉ν N and G = R ⋉µ N with the same normal subgroup N of G, one has
for all n ∈ N

ν(1)(n) = γ1 · n · γ−1
1 = t1 · n1 · n · n−1

1 · t−1
1 = µ(t1)(n1 · n · n−1

1 ) = µ(t1)(In1
(n)),

from where the theorem follows. �

Corollary 3.3.5. Let G = R ⋉µ N be an almost nilpotent (not neessary om-

pletely solvable) Lie group ontaining a lattie Γ. Again, denote by ΓN := Γ ∩N
the indued lattie in the nilradial of G.

Then there exist t1 ∈ R \ {0}, a group homomorphism ν : Z → Aut(ΓN), and
an inner automorphism In1

of N suh that Γ ∼= Z ⋉ν ΓN and ν(1) = µ(t1) ◦ In1
.

If G is almost abelian, then a basis transformation yields Γ ∼= t1Z ⋉µ|Zn Zn
.

Proof. We argue as in the last proof. But we do not use [67, Théorème 5℄ and

get only a group homomorphism ν : Z → Aut(ΓN) (de�ned on Z instead of R).
For general N , the alulation at the end of the proof implies the laim.



34 CHAPTER 3. SOLVMANIFOLDS

Sine an abelian group has only one inner automorphism, in the almost abelian

ase this yields ν(1) = µ(t1)|ΓN
, so ν an be extended to ν : R → A(Rn) via

ν(t) := µ(t · t1). Further, by Corollary 3.2.2, we have ΓN
∼= Zn

. �

Hene we have seen, that the existene of a lattie in an almost nilpotent Lie

group implies that a ertain Lie group automorphism must preserve a lattie in

the (nilpotent) nilradial. The next theorem deals with suh automorphisms.

Theorem 3.3.6. Let N be a onneted and simply-onneted nilpotent Lie group

with Lie algebra n, f∗ ∈ A(n), and f := expN ◦f∗ ◦ logN ∈ A(N), i.e. def = f∗.
Assume that f preserves a lattie Γ in N .

Then there exists a basis X of n suh that MX(f∗) ∈ GL(n,Z), where MX(f∗)
denotes the matrix of f∗ with respet to X.

Moreover, if there are a one-parameter group µ : R → A(N) and t0 6= 0 suh

that µ(t0) = f , i.e. de(µ(t0)) = f∗, then det
(
de(µ(. . .))

)
≡ 1.

Proof. By Theorem 3.1.1 (ii),

L := 〈logN(Γ)〉Z = {
m∑

i=1

ki Vi |m ∈ N+, ki ∈ Z, Vi ∈ logN(Γ)}

is a lattie in n. Therefore, there exists a basis X = {X1, . . . , Xn} of n suh that

L = 〈X〉Z.
Sine f(Γ) ⊂ Γ, we have f∗

(
logN(Γ)

)
⊂ logN (Γ). This implies f∗(L) ⊂ L and

hene, MX(f∗) ∈ GL(n,Z).
Further, if µ(t0) = f with µ, t0 6= 0 as in the statement of the theorem,

then the map ∆ := det ◦de(µ(. . .)) : (R,+) → (R \ {0}, ·) is a ontinuous group

homomorphism with ∆(0) = 1 and ∆(t0) = ±1, i.e. ∆ ≡ 1. �

Remark. The basis X in the last theorem has rational struture onstants.

Obviously, a one-parameter group µ in the automorphism group of an abelian

Lie group with µ(t0) integer valued for t0 6= 0 de�nes a lattie in R ⋉µ Rn
. It

is easy to ompute the �rst Betti number of the orresponding solvmanifold, as

the next proposition will show. Before stating it, we mention that the situation

beomes more ompliated in the ase of a non-abelian and nilpotent group N .

Let a one-parameter group µ : R → A(N) be given and t0 6= 0 suh that

de(µ(t0)) is an integer matrix with respet to a basis X of the Lie algebra n

of N . In general, this does not enable us to de�ne a lattie in R ⋉µ N . But if

ΓN := expN(〈X〉Z) is a lattie in N , i.e. ΓN is a lattie group, then this is possible.

Proposition 3.3.7. Let µ : R → SL(n,R) be a one-parameter group suh that

µ(1) = (mij)i,j ∈ SL(n,Z).
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Then M := (R⋉µ Rn)/(Z ⋉µ Zn) is a solvmanifold with

π1(M) = 〈e0, e1, . . . , en | ∀i∈{1,...,n} e0eie
−1
0 = em1i

1 · · · emni
n

∀i,j∈{1,...,n} [ei, ej ] = 1 〉

and b1(M) = n+ 1− rank
(
µ(1)− id

)
.

Proof. The statement about the fundamental group is lear. Therefore, we

get

H1(M,Z) = 〈e0, e1, . . . , en | ∀i∈{1,...,n} e
m1i

1 · · · emii−1
i · · · emni

n = 1

∀i,j∈{0,...,n} [ei, ej ] = 1 〉

and this group is the abelianisation of

Z⊕ 〈e1, . . . , en | ∀i∈{1,...,n} e
m1i

1 · · · emii−1
i · · · emni

n = 1〉.

Now, the proof of the theorem about �nitely generated abelian groups (see e.g.

[7℄) shows H1(M,Z) = Zn−k+1 ⊕⊕k
i=1 Zdi , where d1, . . . , dk ∈ N+ denote the

elementary divisors of µ(1)− id. The proposition follows. �

We �nally mention a result of Gorbatsevih. In view of Theorem 3.2.11 (iii), it

enables us to ompute the minimal model of a wide lass of solvmanifolds whih

are disrete quotients of almost abelian Lie groups.

Theorem 3.3.8 ([35, Theorem 4℄). Let µ : R → SL(n,R) be a one-parameter

group suh that µ(1) = expSL(n,R)(µ̇(0)) ∈ SL(n,Z). Denote by λ1, . . . , λn the

(possibly not pairwise di�erent) roots of µ̇(0). Then Γ := (Z ⋉µ Zn) is a lattie

in G := (R⋉µ Rn).
The Zariski losures of Ad (Γ) and Ad (G) oinide if and only if the number

πi is not representable as a linear ombination of the numbers λk with rational

oe�ients. �

3.4 Semisimple splittings

In distintion from the nilpotent ase, riteria for the existene of a lattie in

onneted and simply-onneted solvable Lie groups have rather umbersome

formulations. The riterion that we present is due to Auslander [2℄ and makes

use of the onept of semisimple splitting.

Let G be a onneted and simply-onneted Lie group. We all a onneted

and simply-onneted solvable Lie group Gs = T ⋉νs Ns a semisimple splitting

for G if the following hold:

(i) Ns is the nilradial of Gs � the so alled nilshadow of G � and T ∼= Rk
for

k = dimGs − dimNs,
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(ii) T ats on Ns via νs by semisimple automorphisms,

(iii) G is a losed normal subgroup of Gs and Gs = T ⋉̟ G,

(iv) Ns = ZNs
(T ) · (Ns ∩G), where ZNs

(T ) denotes the entralizer of T in Ns.

This de�nition then implies (see e.g. [15, Lemma 5.2℄) that Ns is a onneted

and simply-onneted nilpotent Lie group, N = Ns ∩G, and G/N ∼= T .

Theorem 3.4.1 ([15, Theorems 5.3 and 5.4℄). Let G be a onneted and simply-

onneted solvable Lie group. Then G admits a unique semisimple splitting.

We shall not give the whole proof of this theorem that an be found in [15℄.

But we shortly desribe the onstrution of the semisimple splitting. In order to

do this, we reall the Jordan deomposition of ertain morphisms:

Let ϕ be an endomorphism of a �nite-dimensional vetor spae over a �eld of

harateristi zero. There is a unique Jordan sum deomposition

ϕ = ϕs + ϕn, ϕs ◦ ϕn = ϕn ◦ ϕs,

with ϕs semisimple and ϕn nilpotent. They are alled respetively the semisimple

part and the nilpotent part of ϕ. If ϕ is an automorphism, it also has a unique

Jordan produt deomposition

ϕ = ϕs ◦ ϕu, ϕs ◦ ϕu = ϕu ◦ ϕs,

with ϕs semisimple and ϕu unipotent; ϕs is the same as in the sum deomposition

and ϕu = id + (ϕ−1
s ◦ ϕn). The latter is alled the unipotent part of ϕ.

Note, if ϕ is a derivation resp. an automorphism of a Lie algebra, then the

semisimple and the nilpotent resp. unipotent part of ϕ are also derivations resp.

automorphisms of the Lie algebra.

Now, let G be a onneted and simply-onneted Lie group and f : G→ G a

Lie group automorphism.

Then f∗ := def is a Lie algebra automorphism whih has a Jordan produt

deomposition f∗ = (f∗)s ◦ (f∗)u = (f∗)u ◦ (f∗)s. The semisimple and unipotent

part of f are by de�nition the unique Lie group automorphisms fs, fu : G → G
with defs = (f∗)s and defu = (f∗)u.

Constrution of the semisimple splitting. Let G be a onneted and simply-

onneted solvable Lie group. Denote by N the nilradial of G.
By [15, Proposition 3.3℄, there exists a onneted and simply-onneted nilpo-

tent Lie subgroup H of G suh that G = H · N . Fix suh an H and onsider

the well-de�ned (!) ation ˜̟ : H → A(G) given by ˜̟ (a)(h · n) := h · (Ia|N)s(n),
where (Ia|N)s is the semisimple part of the automorphism of N whih is obtained

by onjugating every element of N by a.
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De�ne T := H/(N ∩H) ∼= HN/N ∼= G/N ∼= Rk
. Note that there is an ation

̟ of T on G making the following diagram ommutative:

H
˜̟ ✲ A(G)

π

❅
❅
❅
❅
❅❘ �

�
�
�
�✒

̟

T = H/(H ∩N)

Set Gs := T ⋉̟ G.
One alulates that

Ns := {π(h−1) · h | h ∈ H} ·N = {(π(h−1), h · n) | h ∈ H, n ∈ N} ⊂ T ⋉G = Gs

is the nilradial of Gs. Furthermore, we have T ·Ns = Gs and T ∩Ns = {e}. For
t ∈ T , h ∈ H , n ∈ N and every ht ∈ π−1({t}) holds

νs(t)
(
π(h−1) · (h · n)

)
:= t · π(h−1) · (h · n) · t−1

= π(h−1) · (h · ˜̟ (ht)(n)),

i.e. νs(t) is a semisimple automorphism and Gs = T ⋉νs Ns.

Remark. As usual, we denote the Lie algebras of the above Lie groups by the

orresponding small German letters. In [21, Chapter III℄ an be found:

There exists a vetor subspae V of |g| with |g| = V ⊕ |n| as vetor spaes
and ∀A,B∈V ad(A)s(B) = 0, where ad(A)s denotes the semisimple part of ad(A).

Let v be a opy of V , onsidered as abelian Lie algebra. Then the Lie algebra

of the semisimple splitting for G is gs = v⋉ad(...)s g, i.e.

∀(A,X),(B,Y )∈gs [(A,X), (B, Y )] =
(
0, [X, Y ] + ad(A)s(Y )− ad(B)s(X)

)
,

with nilradial ns = {(−XV , X) |X ∈ g}, where XV denotes the omponent of

X in V .

Now we state the announed riterion for the existene of latties in solvable

Lie groups.

Theorem 3.4.2 ([2, p. 248℄). Let G be a onneted and simply-onneted solvable

Lie group with nilradial N and semisimple splitting Gs = T ⋉νs Ns, where Ns is

the nilshadow of G.
Then G/N is ontained as a subgroup in Gs/N = T × (Ns/N) and the pro-

jetions π1 : G/N → T , π2 : G/N → Ns/N are isomorphisms of abelian Lie

groups.

Moreover, G admits a lattie if and only if the following onditions are satis-

�ed:
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(i) There exists a basis X := {X1, . . . , Xn, . . . , Xm} with rational struture on-
stants of the Lie algebra ns of Ns suh that {X1, . . . , Xn} is a basis of the

Lie algebra n of N .

We write ns(Q) for the rational Lie algebra 〈X〉Q and Ns(Q) for its image
under the exponential map.

(ii) There exists a lattie subgroup ΓT of T with ΓT ⊂ π1 ◦ π−1
2

(
Ns(Q)/N

)
suh

that the natural ation ΓT → A(ns(Q)) is desribed by integer matries in

an appropriate basis of ns(Q). �

3.5 Three-dimensional solvmanifolds

The only one- and two-dimensional solvmanifolds are tori. Therefore, we begin

our studies of low-dimensional solvmanifolds in dimension three.

Proposition 3.5.1 ([3℄). Every 3-dimensional onneted and simply-onneted

solvable non-nilpotent Lie group G that possesses a lattie Γ has a 2-dimensional
nilradial. The Lie group an be written as G = R ⋉µ R2

and the lattie as

Γ = Z ⋉µ Z2
.

Proof. This is a diret onsequene of Proposition 3.2.5 and Corollary 3.3.5. �

Theorem 3.5.2. A three-dimensional solvmanifold G/Γ is non-formal if and

only if b1(G/Γ) = 2. In this ase, G/Γ is di�eomorphi to a nilmanifold.

Proof. By Theorem 3.1.7, it su�es to onsider the ase whenG is solvable and

non-nilpotent. The last proposition implies that there is a map ν : Z → SL(2,Z)
suh that Γ = Z ⋉ν Z2

.

If none of the roots of ν(1) equals 1, Proposition 3.3.7 implies b1 = 1, so G/Γ
is formal by Theorem 1.3.1.

Assume that ν(1) possesses the double root 1. Then Proposition 3.3.7 implies

b1 = 3 if ν(1) is diagonalisable and b1 = 2 if ν(1) is not diagonalisable.
Case A: ν(1) is diagonalisable

Reall that a solvmanifold is uniquely determined by its fundamental group.

Therefore, we an assume G = R ⋉µ R2
and Γ = Z ⋉µ 〈v1, v2〉Z with linearly

independent v1, v2 ∈ R2
and µ(t) ≡ id. In this ase, G/Γ is a torus whih is

formal.

Case B: ν(1) is not diagonalisable
In this ase, we an assume G = R ⋉µ R2

as well as Γ = Z ⋉µ 〈v1, v2〉Z with

linearly independent v1, v2 ∈ R2
and

µ(t) =

(
1 t
0 1

)
.
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The Lie algebra g = 〈T,X, Y | [T, Y ] = X〉 of G is nilpotent, so G/Γ is a nilmani-

fold with b1 = 2. Therefore, it annot be a torus and is not formal by Theorem

3.1.7. �

In [3, Chapter III �3℄ the three-dimensional solvmanifolds whih have no nil-

manifold struture are examined. This, together with the last theorem, yields a

�ohomologial� lassi�ation of three-dimensional solvmanifolds.

Theorem 3.5.3. Every 3-dimensional solvmanifold G/Γ is ontained in Table

3.1 on page 39. In partiular, G/Γ is non-formal if and only if it is a non-toral

Table 3.1: 3-dimensional solvmanifolds

b1(G/Γ) G/Γ formal Nilmfd.

3

.s.

4

a) 3 yes Torus yes

b) 2 no yes yes

) 1 yes no yes

d) 1 yes no no

nilmanifold. �

Example. The torus R3/Z3
is a solvmanifold with b1 = 3, and examples of

3-dimensional solvmanifolds with b1 = 2 will be given in the next theorem.

For i ∈ {1, 2} onsider the Lie groups Gi = R ⋉µi
R2

, where µi is given by

µ1(t)(x, y) = (et x, e−t y), µ2(t)(x, y) = (cos(t) x+ sin(t) y,− sin(t) x+ cos(t) y).
G1 is ompletely solvable and possesses the lattie

Γ1 := t1 Z ⋉µ1
〈
(

1
1

)
,

(
18+8

√
5

7+3
√
5

2
3+

√
5

)
〉Z,

where t1 = ln(3+
√
5

2
). Note that the following equation implies that Γ1 really is a

lattie

(
et1 0
0 e−t1

)
=

(
1 18+8

√
5

7+3
√
5

1 2
3+

√
5

)(
0 −1
1 3

)(
1 18+8

√
5

7+3
√
5

1 2
3+

√
5

)−1

. (3.4)

G2 is not ompletely solvable and ontains the lattie

Γ2 = πZ ⋉µ2
Z2.

A short omputation yields that the abelianisations of Γi have rank one, i.e.

we have onstruted examples of type ) and d) in Table 3.1.

3

possesses the struture of a solvmanifold as quotient of a nilpotent Lie group

4

possesses the struture of a solvmanifold as quotient of a ompletely solvable Lie group
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Theorem 3.5.4. Every lattie in the unique 3-dimensional onneted and simply-
onneted non-abelian nilpotent Lie group

U3(R) := {




1 x z
0 1 y
0 0 1


 | x, y, z ∈ R}

is isomorphi to Γ3,n := Γ3,n(Z) := {




1 x z
n

0 1 y
0 0 1


 | x, y, z ∈ Z} with n ∈ N+.

Therefore, any three-dimensional nilmanifold with b1 = 2 is of the form

U3(R)/Γ3,n(Z).
Γ3,n(Z) is presented by 〈e1, e2, e3 | [e1, e2] = en3 and e3 entral 〉.
Proof. U3(R) is the only onneted and simply-onneted non-abelian nilpo-

tent Lie group of dimension three. By [3, Chapter III � 7℄, eah lattie in it is

isomorphi to Γ3,n. The other assertions follow trivially. �

Sometimes, we shall write (x, y, z) for the orresponding matrix in U3(R).
For later appliations, we are going to determine the Lie group automorphisms

and the one-parameter groups of U3(R). In order to do this, we start with the

following proposition. Note that Z(G) denotes the enter of a group G.

Proposition 3.5.5.

(i) [U3(R), U3(R)] = Z(U3(R)) = {(0, 0, z) | z ∈ R}, U3(R)/Z(U3(R)) ∼= R2

(ii) Every Lie group homomorphism f : U3(R) → U3(R) indues natural Lie

group homomorphisms

fZ : Z(U3(R)) −→ Z(U3(R))

and

f : U3(R)/Z(U3(R)) −→ U3(R)/Z(U3(R)).

[(x, y, 0)] = [(x, y, z)] 7−→ [f
(
(x, y, z)

)
] = [(f1(x, y, 0), f2(x, y, 0), 0)]

f uniquely determines fZ, and f is an automorphism if and only if f is

suh.

(iii) Let γ1 = (a1, b1,
c1
n
), γ2 = (a2, b2,

c2
n
) ∈ Γ3,n. Then there is a unique homo-

morphism g : Γ3,n → Γ3,n suh that g
(
(1, 0, 0)

)
= γ1 and g

(
(0, 1, 0)

)
= γ2.

Moreover, g
(
(0, 0, 1

n
)
)
=
(
0, 0, 1

n
(a1b2 − a2b1)

)
.

One has Γ3,n/Z(Γ3,n) ∼= Z2
, and g is an isomorphism if and only if

g : Γ3,n/Z(Γ3,n) −→ Γ3,n/Z(Γ3,n)

is an isomorphism, i.e. a1b2 − a2b1 = ±1.
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Proof. (i) is trivial.

ad (ii): Let f : U3(R) → U3(R) be a Lie group homomorphism. Then

f
(
(0, 0, z)

)
= [f

(
(z, 0, 0)

)
, f
(
(0, 1, 0)

)
] ∈ Z(U3(R)), (3.5)

i.e. f
(
Z(U3(R))

)
⊂ Z(U3(R)). Moreover, one has for (a, b, c) := f

(
(x, y, 0)

)

(a, b, 0)−1 · (a, b, c) = (−a,−b,−ab) · (a, b, c) = (0, 0,−2ab+ c) ∈ Z(U3(R)),

and therefore [(a, b, 0)] = f([(x, y, 0)]). Now, (3.5) implies that fZ is uniquely

determined by f .
Assume, f is an isomorphism. Then (3.5) also holds for f−1

and we get

f
(
Z(U3(R))

)
= Z(U3(R)), i.e. fZ is an isomorphism of the additive group R.

Sine f is ontinuous, there existsm ∈ R\{0} suh that fZ
(
(0, 0, z)

)
= (0, 0, mz).

Denote by (fij)1≤i,j≤2 the matrix of f : R2 → R2
with respet to the basis

{
(

1
0

)
,

(
0
1

)
} of the vetor spae R2

. One alulates

(0, 0, det(fij)) = [(f11, f21, 0), (f12, f22, 0)] = [f
(
(1, 0, 0)

)
, f
(
(0, 1, 0)

)
]

(3.5)
= (0, 0, m),

so f is an automorphism, sine m 6= 0.
Conversely, if f is an automorphism, then the homomorphism fZ is given by

fZ
(
(0, 0, z)

)
= (0, 0, det(f)z) whih is even an automorphism. Therefore, the

5-Lemma implies that f is an automorphism.

ad (iii): Let γ1, γ2 be as in (iii). Then [γ1, γ2] =
(
0, 0, 1

n
(a1b2 − a2b1)

)n
and

this implies the existene of the (unique) homomorphism g with the mentioned

properties.

If g is an isomorphism, then g(Z(Γ3,n)) = Z(Γ3,n) = {(0, 0, z
n
) | z ∈ Z}, and

therefore |a1b2 − a2b1| = 1. Sine the matrix of g has determinant a1b2 − a2b1, f
is an isomorphism.

Again, the onverse is trivial. �

Theorem 3.5.6. As a set, the group of Lie group automorphisms A(U3(R))
equals GL(2,R)× R2

, the group law is given by

(A, a) ◦ (B, b) =
(
AB, det(B)B−1a+ det(A)b)

)
, (3.6)

and for f = (A =

(
α β
γ δ

)
,

(
u
v

)
) ∈ A(U3(R)) and (x, y, z) ∈ U3(R) we have

f
(
(x, y, z)

)
=

(
αx+ βy, γx+ δy,

det(A)z + βγxy + αγ
2
x2 + βδ

2
y2 + uy − vx

)
. (3.7)
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Proof. Let f ∈ A(U3(R)) and (x, y, z) ∈ U3(R) be given. We have to show

that there is (

(
α β
γ δ

)
,

(
u
v

)
) ∈ GL(2,R)×R2

suh that f
(
(x, y, z)

)
satis�es

(3.7). Then a short omputation yields (3.6).

Let

(
α β
γ δ

)
∈ GL(2,R) be the matrix of f with respet to the anonial

basis of R2
. We showed in the last proof f

(
(0, 0, z)

)
= (0, 0 det(f)z).

There exist smooth funtions f1, f2 : R → R with

f
(
(x, 0, 0)

)
= (αx, γx, f1(x)),

f
(
(0, y, 0)

)
= (βy, δy, f2(y)).

We set u := f
′

2(0) and v := −f ′

1(0). The homomorphism property of f implies

1

h
(f1(x+ h)− f1(x)) =

f1(h)− f1(0)

h
+ αγx,

1

h
(f2(y + h)− f2(y)) =

f2(h)− f2(0)

h
+ βδy,

and this yields

f1(x) = −vx+ αγ

2
x2,

f2(y) = uy +
βδ

2
y2.

Using (x, y, z) = (0, y, 0)(x, 0, 0)(0, 0, z), one omputes (3.7). �

Corollary 3.5.7. f = (A,

(
u
v

)
) ∈ A(U3(R)) with A =

(
α β
γ δ

)
lies on a

one-parameter group of A(U3(R)) if and only if A lies one a one-parameter group

of GL(2,R).

If νt =

(
αt βt
γt δt

)
denotes a one-parameter group with ν1 = A, then the map

µt : R → A(U3(R)) de�ned by

µt

(
(x, y, z)

)
=

(
αtx+ βty, γtx+ δty,

(αtδt − βtγt)︸ ︷︷ ︸
= 1

z + βtγtxy +
αtγt
2
x2 + βtδt

2
y2 + tuy − tvx

)

is a one-parameter group with µ1 = f .

Proof. The only laim that is not obvious is the fat that µt de�nes a one-

parameter group. Using νt+s = νt ◦ νs, this an be seen by a short alulation. �
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3.6 Four-dimensional solvmanifolds

As we have done in the three-dimensional ase, we are going to give a �oho-

mologial� lassi�ation of four-dimensional solvmanifolds. We shall onsider all

isomorphism lasses of latties that an arise in a four-dimensional onneted

and simply-onneted solvable Lie group. The next proposition desribes suh

latties in the ase of a non-nilpotent group.

Proposition 3.6.1. Every 4-dimensional onneted and simply-onneted solv-

able non-nilpotent Lie group G that possesses a lattie Γ has a 3-dimensional
nilradial N whih is either R3

or U3(R). Therefore, G/Γ �bers over S1
(this is

the Mostow bundle) and the Lie group an be written as G = R ⋉µ N . If N is

abelian, a basis transformation yields Γ = Z⋉µ|
Z3
Z3
. Otherwise, Γ is isomorphi

to Z ⋉ν Γ3,n, where ν : Z → Aut(Γ3,n) is a group homomorphism with

ν(1)(x, y, z
n
) =

(
a1x+ a2y, b1x+ b2y, a2b1xy + a1b1

x(x−1)
2

+ a2b2
y(y−1)

2

+ 1
n
(c1x+ c2y + (a1b2 − a2b1)z)

)
,

where c1, c2,∈ Z, and

(
a1 a2
b1 b2

)
∈ GL(2,Z) is the matrix of ν(1) with respet to

the anonial basis of the Z-module Z2 = Γ3,n/Z(Γ3,n). Moreover, ν(1) lies on a

one-parameter group R → A(U3(R)/Z(U3(R))) = GL(2,R), i.e. ν(1) ∈ SL(2,R).

Proof. From [63, Theorem 3.1.10℄ follows dimN = 3 and G = R ⋉µ N . If N
is abelian, Corollary 3.3.5 implies that we an assume Γ = Z ⋉µ|

Z3
Z3

.

Assume now that N is not abelian, i.e. N = U3(R). ΓN = Γ ∩ N is a

lattie in N and by Theorem 3.5.4, we have ΓN = Γ3,n. By Corollary 3.3.5,

there is a homomorphism ν : Z → Aut(Γ3,n) with Γ ∼= Z ⋉ν Γ3,n. Proposition

3.5.5(iii) implies that ν(1) is determined by (a1, b1,
c1
n
) := ν(1)

(
(1, 0, 0)

)
and

(a2, b2,
c2
n
) := ν(1)

(
(0, 1, 0)

)
∈ Γ3,n. Sine (x, y, z

n
) = (0, 1, 0)y(1, 0, 0)x(0, 0, 1

n
)z, a

short omputation yields the laimed formula for ν(1)
(
(x, y, z

n
)
)
.

Further, Corollary 3.5.7 implies that ν(1) lies on a one-parameter group. �

Theorem 3.6.2. Every 4-dimensional solvmanifold G/Γ is ontained in Table

3.2. In partiular, G/Γ is non-formal if and only if it is a non-toral nilmanifold.

Proof. Apart from the olumn on formality the theorem follows from works

of Geiges [31℄ and Hasegawa [40℄. (Attention: In [40℄ a more general notion of

solvmanifold is used!)

A deomposable four-dimensional onneted and simply-onneted nilpotent

Lie group is abelian or has a two-dimensional enter. The only onneted and

simply-onneted indeomposable nilpotent Lie group of dimension four has a

two-dimensional ommutator. By Propositions 3.1.4 and 3.1.3, the orrespond-

ing nilmanifolds have the struture of orientable T 2
-bundles over T 2

. (The ori-

entability follows from the total spaes' orientability.)
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Table 3.2: 4-dimensional solvmanifolds

b1(G/Γ) G/Γ formal sympleti omplex Kähler Nilmfd.

5

.s.

6

a) 4 yes yes Torus yes Torus yes

b) 3 no yes PKS

7

no yes yes

) 2 yes yes no no no yes

d) 2 yes yes HS

8

yes no no

e) 2 no yes no no yes yes

f) 1 yes no no no no yes

g) 1 yes no IS0 9

no no no

h) 1 yes no IS+ 10

no no yes

i) 1 yes no SKS

11

no no no

From a result of Geiges [31, Theorems 1 and 3℄ follows that they are ontained

in Table 3.2. (Reall that a nilmanifold is formal if and only if it is a torus.) In

partiular, every four-dimensional nilmanifold is sympleti.

Now, we regard a lattie Γ = Z ⋉ν ΓN , ΓN ∈ {Z3,Γ3,n(Z)}, in a Lie group

G = R⋉µ N as in the last proposition.

We expand Hasegawa's argumentation in [40℄ by the aspet of formality and

onsider the �roots� of ν(1). Reall, Corollary 3.2.2 implies that a solvmanifold is

determined by its fundamental group. Below, we shall use this fat several times.

Case A.: ΓN = Z3

By Proposition 3.6.1, ν extends to a one-parameter group R → SL(3,R). Denote
by λ1, λ2, λ3 ∈ C the roots of ν(1) ∈ SL(3,Z), i.e. λ1 · λ2 · λ3 = 1. We get from

Theorem 3.3.3 and Lemma B.4 that the following subases an our:

A.1.) λ1, λ2, λ3 ∈ R+

A.1.1.) ∃i0 λi0 = 1 (w.l.o.g. λ1 = 1)

A.1.1.1.) λ2 = λ3 = 1

A.1.1.2.) λ2 = λ−1
3 ∈ R \ {1}

A.1.2.) ∀i λi 6= 1

A.1.2.1.) ν(1) is diagonalisable

A.1.2.2.) ν(1) is not diagonalisable

5

possesses the struture of a solvmanifold as quotient of a nilpotent Lie group

6

possesses the struture of a solvmanifold as quotient of a ompletely solvable Lie group

7

PrimaryKodaira Surfae

8

Hyperellipti Surfae

9

Inoue Surfae of Type S
0

10

Inoue Surfae of Type S
+

11

Seondary Kodaira Surfae
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A.2.) λ1 = 1, λ2 = λ3 = −1 and ν(1) is diagonalisable

A.3.) ∃i0 λi0 ∈ C \ R (w.l.o.g. λ2 = λ3 ∈ C \ R and λ1 ∈ R+)

A.3.1.) λ1 = 1

A.3.2.) λ1 6= 1

Case A.1.1.1.: λ1 = λ2 = λ3 = 1
If ν(1) is diagonalisable, then G/Γ is learly a torus. This is ase a). If ν(1) is
not diagonalisable we an assume G = R⋉µ R3

and Γ = Z⋉µ 〈v1, v2, v3〉Z, where
µ(t) is one of the following one-parameter groups

exp(t




0 0 0
0 0 1
0 0 0


) =




1 0 0
0 1 t
0 0 1


 ,

exp(t




0 1 −1
2

0 0 1
0 0 0


) =




1 t 1
2
(t2 − t)

0 1 t
0 0 1


 .

In both ases G/Γ is a 4-dimensional nilmanifold and therefore sympleti. In

the �rst ase, we have a primary Kodaira surfae with b1 = 3, see [40, Setion

2.2.3)℄; in the seond ase the nilmanifold has b1 = 2 and no omplex struture,

see [41, Example 2℄. Being non-toral nilmanifolds, both are not formal and we

get the ases b) and e).

Cases A.1.1.2. and A.1.2.1.: The λi are positive and pairwise di�erent or

two of them are equal but ν(1) is diagonalisable. (The latter annot happen by

Lemma B.4.)

We an assume G = R⋉µR3
and Γ = Z⋉µ 〈v1, v2, v3〉Z with linearly independent

v1, v2, v3 ∈ R3, where µ(t) =




exp(t ln(λ1)) 0 0
0 exp(t ln(λ2)) 0
0 0 exp(t ln(λ3))


 . By

[41, Example 2℄, the solvmanifold G/Γ does not admit a omplex struture.

One omputes the Lie algebra of G as

g = 〈 T,X, Y, Z | [T,X ] = ln(λ1)X, [T, Y ] = ln(λ2)Y, [T, Z] = ln(λ3)Z 〉

whih is ompletely solvable and non-nilpotent. Therefore, the minimal model of

the Chevalley-Eilenberg omplex is the minimal model of G/Γ.
If none of the roots λi is one, we see by Proposition 3.3.7 that b1(G/Γ) = 1.

Sine G/Γ is parallelisable, this implies b2(G/Γ) = 0, so the spae annot be

sympleti. Further it is formal by Theorem 1.3.1. This is ase f) in Table 3.2.

If one of the roots is one (w.l.o.g. λ1 = 1), we have b1(G/Γ) = 2 and the

Chevalley-Eilenberg omplex is

(∧
(τ, α, β, γ) , dτ = dα = 0, dβ = − ln(λ2) τ ∧ β, dγ = − ln(λ3) τ ∧ γ

)
.
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τ ∧ α + α ∧ β + α ∧ γ − β ∧ γ de�nes a sympleti form on G/Γ. Further, one

omputes the �rst stage of the minimal model of the Chevalley-Eilenberg omplex

as

M≤1 =
∧

(x1, x2), dxi = 0.

Therefore, G/Γ is 1-formal and by Theorem 1.1.6 formal. This is ase ) in Table

3.2.

Case A.1.2.2.: λi ∈ R+ \ {1} and ν(1) is not diagonalisable
In this ase two roots must be equal (w.l.o.g. λ2 = λ3) and the third is di�erent

from the others, i.e. λ1 = 1
λ2
2

6= λ2. Sine the harateristi polynomial of ν(1)

has integer oe�ients, Lemma B.4 implies λ2 = ±1 and this is a ontradition.

Cases A.2. and A.3.1.: λ1 = 1, λ2 = λ3 = exp(iϕ) ∈ C \ R, ϕ ∈]0, 2π[
We an assume G = R⋉µR3

and Γ = Z⋉µ 〈v1, v2, v3〉Z with linearly independent

v1, v2, v3 ∈ R3, where µ(t) =




1 0 0
0 cos(tϕ) − sin(tϕ)
0 sin(tϕ) cos(tϕ)


 . Thus G/Γ is a hyper-

ellipti surfae (see [40, Setion 3.3.℄) whih is Kählerian and has b1 = 2. The

Lie algebra of G is not ompletely solvable and we are in ase d).

Case A.3.2.: λ1 6= 1, λ2 = λ3 = |λ2| exp(iϕ) ∈ C \ R, ϕ ∈]0, 2π[\{π}
We an assume G = R⋉µR3

and Γ = Z⋉µ 〈v1, v2, v3〉Z with linearly independent

v1, v2, v3 ∈ R3
, where µ(t) =




λt1 0 0
0 |λ2|t cos(tϕ) −|λ2|t sin(tϕ)
0 |λ2|t sin(tϕ) |λ2|t cos(tϕ)


 . Thus G/Γ is

a Inoue surfae of type S0
(see [40, Setion 3.6.℄), whih is not sympleti and

has b1 = 1 (by Proposition 3.3.7, sine 1 is no root of µ(1)). By Theorem 1.3.1,

G/Γ is formal. The Lie algebra of G is not ompletely solvable and this yields

ase g) of Table 3.2.

Case B.: ΓN = Γ3,n(Z)
In this ase we have a homomorphism ν : Z → Aut(Γ3,n(Z)). We shall write N
for U3(R) and ΓN for Γ3,n(Z). The automorphism ν(1) indues an automorphism

ν(1) of ΓN/Z(ΓN) = Z2
whih lies by Proposition 3.6.1 on a one-parameter group

R → A(U3(R)/ΓN) = GL(2,R). Denote the roots of ν(1) ∈ GL(2,Z) by λ̃1, λ̃2.
Theorem 3.3.3 shows that the following ases are possible:

B.1.) λ̃1, λ̃2 ∈ R+

B.1.1.) λ̃1 = λ̃2 = 1

B.1.2.) λ̃1 = λ̃−1
2 6= 1

B.2.) λ̃1 = λ̃2 = −1 and ν(1) is diagonalisable

B.3.) λ̃1 = λ̃2 ∈ C \ R
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ν(1) also indues an automorphism ν(1)Z of the enter Z(ΓN) of ΓN whih equals

det
(
ν(1)

)
· id = id by Proposition 3.5.5(iii).

Case B.1.1.: λ̃1 = λ̃2 = 1

By [30, Lemma 1℄, we an assume ν(1) =

(
1 k
0 1

)
∈ SL(2,Z) with k ∈ N. Then

Proposition 3.6.1 yields ν(1)
(
(x, y, z

n
)
)
= (x+ ky, y, k y(y−1)

2
+ c1x+c2y+z

n
) and this

implies

Γ = Z ⋉ν Γ3,n

= 〈e0, . . . , e3 | [e0, e1] = ec13 , [e
−1
2 , e0] = ek1e

c2
3 , [e0, e3] = 1, [e1, e2] = en3 〉.

This is a disrete torsion-free nilpotent group, whih an be embedded as a lattie

in a onneted and simply-onneted nilpotent Lie group by [66, Theorem 2.18℄.

Sine a solvmanifold is uniquely determined by its fundamental group, G/Γ is

di�eomorphi to a nilmanifold.

As at the beginning of the proof, we onlude that G/Γ is the total spae of a

T 2
-bundle over T 2

and ours in our list. The quotient G/Γ is of type b) if k = 0
and of type e) if k 6= 0.

Case B.1.2.: λ̃1 = λ̃−1
2 ∈ R+ \ {1}

We have ν(1) =

(
a1 a2
b1 b2

)
∈ SL(2,Z), and Proposition 3.6.1 implies

ν(1)(x, y, z
n
) =

(
a1x+ a2y, b1x+ b2y, a2b1xy + a1b1

x(x−1)
2

+ a2b2
y(y−1)

2

+ 1
n
(c1x+ c2y + (a1b2 − a2b1)z)

)

for ertain c1, c2 ∈ Z.

Choose eigenvetors

(
v1
v2

)
,

(
w1

w2

)
∈ R2 \{0} with respet to the eigenval-

ues λ̃1 resp. λ̃2 of
τν(1) (where τ

denotes the transpose). There exist u1, u2, u3 ∈ R
suh that for γi := (vi, wi, ui), i ∈ {1, 2}, and γ3 := (0, 0, u3) ∈ U3(R) we have

[γ1, γ2] = γn3 ,

µ̃(1)(γ1) = γa11 γ
b1
2 γ

c1
3 , µ̃(1)(γ2) = γa21 γ

b2
2 γ

c2
3 ,

where µ̃(t)
(
(x, y, z)

)
=
(
exp(t ln(λ̃1)) x, exp(t ln(λ̃2)) y, z

)
.

Then G/Γ is di�eomorphi to the solvmanifold G̃/Γ̃, where G̃ = R⋉µ̃ U3(R)
and Γ̃ = Z ⋉µ̃ 〈γ1, γ2, γ3〉, i.e. G/Γ is a Inoue surfae of type S+

, see [40, Setion

3.7℄. The Lie algebra of G̃,

g̃ = 〈 T,X, Y, Z | [T,X ] = X, [T, Y ] = −Y, [X, Y ] = Z 〉,

is ompletely solvable and not nilpotent. Further, the knowledge of g̃ implies

b1(G/Γ) = 1. By Theorem 1.3.1, G/Γ is formal. Therefore, this is a solvmanifold

of type h) in Table 3.2.
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Case B.2.: λ̃1 = λ̃2 = −1 and ν(1) is diagonalisable

[30, Lemma 1℄ implies that we an assume ν(1) =

(
−1 0
0 −1

)
∈ SL(2,Z). So

Proposition 3.6.1 implies ν(1)
(
(x, y, z

n
)
)
= (−x,−y, c1x+c2y+z

n
) for ertain integers

c1, c2 ∈ Z. Moreover, G/Γ is di�eomorphi to G̃/Γ̃, where G̃ := R⋉µ̃ U3(R),

µ̃(t)
(
(x, y, z)

)
=
(
cos(tπ) x− sin(tπ) y, sin(tπ) x+ cos(tπ) y, z + ht(x, y)

)
,

ht(x, y) = 1
2
sin(tπ)

(
cos(tπ)

(
x2 − y2

)
− 2 sin(tπ)xy

)
and Γ̃ = Z ⋉µ̃ 〈γ1, γ2, γ3〉

suh that [γ1, γ2] = γn3 , µ̃(1)(γ1) = γ−1
1 γc13 and µ̃(1)(γ2) = γ−1

2 γc23 . (Using the

addition theorems for sin and cos, one alulates that µ̃ is a one-parameter group

in A(U3(R)).) By [40, Setion 3.5℄, G̃/Γ̃ is a seondary Kodaira surfae.

Obviously, the Lie algebra of G̃ is not ompletely solvable and we annot use

its Chevalley-Eilenberg omplex for omputing b1(G/Γ). But sine

Γ = 〈e0, . . . , e3 | e0e1e−1
0 = e−1

1 ec13 , e0e2e
−1
0 = e−1

2 ec13 , [e0, e3] = 1, [e1, e2] = en3 〉,

we see b1(G/Γ) = rankΓab = 1 and G/Γ belongs to the last row in Table 3.2.

Case B.3.: λ̃1 = λ̃2 = exp(iϕ) ∈ C \ R, ϕ ∈]0, 2π[\{π}
This ase is similar to the last one. We have |tr ν(1)| ≤ |λ̃1| + |λ̃2| = 2 and [30,

Lemma 1℄ implies that we an assume ν(1) to be

(
0 −1
1 0

)
or ±

(
0 −1
1 1

)
.

In eah ase, one omputes b1(G/Γ) = rankΓab = 1, as above. Moreover, one

embeds a lattie Γ̃ isomorphi to Γ in the Lie group G̃ := R⋉µ̃ U3(R), where

µ̃(t)
(
(x, y, z)

)
=
(
cos(tϕ) x− sin(tϕ) y, sin(tϕ) x+ cos(tϕ) y, z + ht(x, y)

)
,

ht(x, y) =
1
2
sin(tϕ)

(
cos(tϕ)

(
x2 − y2

)
− 2 sin(tϕ)xy

)
. Again, G̃/Γ̃ is a seondary

Kodaira surfae and G/Γ is an example for ase i). For more details see [40,

Setion 3.5℄. �

Below, we give examples for eah of the nine types of four-dimensional solv-

manifolds. The Lie algebras of the onneted and simply-onneted four-dimen-

sional solvable Lie groups that admit latties are listed in Table A.1 in Appendix

A.

Example. The following manifolds belong to the orresponding row in Table 3.2.

a) R4/Z4

b) (R⋉µb
R3)/(Z ⋉µb

Z3), µb(t) =




1 0 0
0 1 t
0 0 1
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) (R⋉µc
R3)/Γc with

Γc = Z ⋉µc
〈




1
0
0


 ,




0
1
1


 ,




0
18+8

√
5

7+3
√
5

2
3+

√
5


〉Z,

t1 = ln(3+
√
5

2
) and µc(t) =




1 0 0
0 et t1 0
0 0 e−t t1


 ; the proof that this is really

a solvmanifold is analogous to that in the example on page 39.

d) (R⋉µd
R3)/(πZ ⋉µd

Z3), µd(t) =




1 0 0
0 cos(t) − sin(t)
0 sin(t) cos(t)




e) (R⋉µe
R3)/(Z ⋉µe

Z3), µe(t) =




1 t 1
2
(t2 − t)

0 1 t
0 0 1




f) Consider A :=




0 0 1
1 0 −11
0 1 8


 ∈ SL(3,Z). A has X3 − 8X2 + 11X − 1 as

harateristi polynomial whih possesses three pairwise di�erent real roots

t1 ≈ 6, 271, t2 ≈ 1, 631 and t3 ≈ 0, 098. Therefore, A is onjugate to µf(1),

where µf(t) =




et ln(t1) 0 0
0 et ln(t2) 0
0 0 et ln(t3)



, and this implies the existene

of a lattie Γf in the ompletely solvable Lie group R⋉µf
R3

.

g) Let A :=




0 0 1
1 0 −8
0 1 4


 ∈ SL(3,Z). The harateristi polynomial of A is

X3− 4X2+8X − 1 whih has three pairwise di�erent roots t1 ≈ 0, 134 and
t2,3 = (1/

√
t1) (cos(ϕ) ± i sin(ϕ)) ≈ 1, 933 ± 1, 935 i. So A is onjugate to

µg(1), where µg(t) =




et ln(t1) 0 0
0 et ln(|t2|) cos(t ϕ) −et ln(|t2|) sin(t ϕ)
0 et ln(|t2|) sin(t ϕ) et ln(|t2|) cos(t ϕ)



, and

this implies the existene of a lattie Γg in the Lie group R⋉µg
R3

.

h) Using Theorem 3.1.1, one shows that

γ1 := (1, 1,−1 +
√
5

3 +
√
5
),

γ2 := (−2(2 +
√
5)

3 +
√
5
,
1 +

√
5

3 +
√
5
,−11 + 5

√
5

7 + 3
√
5
),
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γ3 := (0, 0,
√
5)

generate a lattie Γ in U3(R) with [γ1, γ2] = γ3 and γ3 entral.

De�ne the one-parameter group µh : R → A(U3(R)) by

µh(t)
(
(x, y, z)

)
= (e−t t1x, et t1y, z),

where t1 := ln(3+
√
5

2
). Then µh(1) preserves the lattie Γ with

µh(1)(γ1) = γ21 γ2, µh(1)(γ2) = γ1 γ2, µh(1)(γ3) = γ3

and therefore, Z ⋉µh
Γ is a lattie in R⋉µh

U3(R).

i) Consider the Lie group G̃ and the one-parameter group µ̃ of Case B.2 from

the proof of the last theorem. Setting γ1 = (1, 0, 0), γ2 = (0, 1, 0) as well
as γ3 = (0, 0, 1), n = 1 and c1 = c2 = 0, one expliitly gets an example.

The manifolds of type ) show that formal spaes with the same minimal

model as a Kähler manifold need not be Kählerian. This was proved by Fernández

and Gray.

Theorem 3.6.3 ([25℄). Let M be one of the sympleti solvmanifolds of type )

in the last theorem, i.e. M is formal and possesses no omplex struture. M has

the same minimal model as the Kähler manifold T 2 × S2
. �

3.7 Five-dimensional solvmanifolds

We study the �ve-dimensional solvmanifolds by regarding latties in the orre-

sponding onneted and simply-onneted Lie groups. By Proposition 3.2.3, their

Lie algebras have to be unimodular. These are listed in Appendix A.

3.7.1 Nilpotent and deomposable solvable Lie algebras

There are nine lasses of nilpotent Lie algebras in dimension �ve, see Table A.2.

Eah of them has a basis with rational struture onstants. By Theorem 3.1.1,

the orresponding onneted and simply-onneted Lie groups admit latties and

aordingly to Theorem 3.1.7, the assoiated nilmanifolds are formal if and only if

they are tori. For i ∈ {4, 5, 6} the onneted and simply-onneted nilpotent Lie

group with Lie algebra g5.i possesses the left-invariant ontat form x1 (where x1
is dual to the basis elementX1 ∈ gi as in Table A.2). Therefore, the orresponding

nilmanifolds are ontat.

The eight lasses of deomposable unimodular non-nilpotent solvable Lie al-

gebras are listed in Table A.3. Exept for g4.2 ⊕ g1, the orresponding onneted

and simply-onneted Lie groups admit latties sine both of their fators admit

latties.
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Theorem 3.7.1.1. The onneted and simply-onneted Lie group G4.2×R with

Lie algebra g4.2 ⊕ g1 possesses no lattie.

Proof. Write G for G4.2 × R and

g = 〈X1, . . . , X5 | [X1, X4] = −2X1, [X2, X4] = X2, [X3, X4] = X2 +X3〉

for its Lie algebra whih has n = R4
X1,X2,X3,X5

as nilradial. Therefore, G an be

written as almost abelian Lie group R⋉µ R4
with

µ(t) = expGL(4,R)(t ad(X4)|n) =




e2t 0 0 0
0 e−t −te−t 0
0 0 e−t 0
0 0 0 1


 .

By Corollary 3.3.5, the existene of a lattie in G would imply that there is

t1 ∈ R \ {0} suh that µ(t1) is onjugate to an element of SL(4,Z). Clearly, the
harateristi polynomial of µ(t1) is P (X) = (X−1) P̃ (X) , where the polynomial

P̃ (X) = X3 − kX2 + lX − 1 ∈ Z[X ] has the double root e−t1
. Lemma B.4 then

implies e−t1 = 1, i.e. t1 = 0 whih is a ontradition. �

Proposition 3.7.1.2. If Γ is a lattie in a �ve-dimensional ompletely solvable

non-nilpotent onneted and simply-onneted deomposable Lie group G, then
G/Γ is formal.

Proof. LetG, Γ be as in the proposition. As usual, we denote by g the Lie alge-

bra of G. We have g = h ⊕ kg1 with k ∈ {1, 2} and a ertain (5−k)-dimensional

ompletely solvable non-nilpotent Lie algebra h, see Tables A.3 and A.1. By

ompletely solvability and Theorem 3.2.11 (ii), G/Γ and the Chevalley-Eilenberg

omplex of h ⊕ kg1 share their minimal model M. The lower dimensional dis-

ussion above shows that for all h whih an arise in the deomposition of g the

algebras M(
∧

h∗,δh) and M(
∧

kg∗
1
,δ=0) = (

∧
kg∗1, δ = 0) are formal. This implies the

formality of M = M(
∧

h∗,δh) ⊗M(
∧

kg∗
1
,δ=0). �

3.7.2 Indeomposable non-nilpotent Lie algebras

There are 19 lasses of indeomposable non-nilpotent Lie algebras in dimension

�ve whih are unimodular. These are listed in Tables A.4 � A.7. Instead of

the small German letters for the Lie algebras in the mentioned tables, we use

apital Latin letters (with the same subsripts) for the orresponding onneted

and simply-onneted Lie groups.

We want to examine whih of them admit latties and where appropriate,

whether the quotients are formal. The non-existene proofs of latties in ertain

almost abelian Lie groups below are taken from Harshavardhan's thesis [38℄.

Some of the existene proofs of latties in ertain almost abelian Lie groups are

skethed in [38, pp. 29 and 30℄.
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Almost abelian algebras (with nilradial n := 4g1 = 〈X1, . . . , X4 | 〉)
We now onsider the almost abelian Lie groups G5.i = R ⋉µi

R4
. We write

µ(t) = µi(t) = expGL(4,R)(t ad(X5)|n), where X5 ∈ g5.i is as in Table A.4 (X5

depends on i). We know by Corollary 3.3.5, Theorem 3.3.6 and Proposition 3.3.7

that there is a lattie Γ in G5.i if and only if there exists t1 6= 0 suh that µ(t1)
is onjugate to µ̃(1) ∈ SL(4,Z) and Γ = Z ⋉µ̃ Z4

. This will be used in the proof

of the following propositions.

Methods to obtain integer matries with given harateristi polynomial and

neessary onditions for their existene are given in Appendix B.

Proposition 3.7.2.1. Let p, q, r ∈ R with −1 ≤ r ≤ q ≤ p ≤ 1, pqr 6= 0 and

p+ q+ r = −1. If the ompletely solvable Lie group Gp,q,r
5.7 admits a lattie and M

denotes the orresponding solvmanifold, then M is formal, b1(M) = 1 and one of

the following onditions holds:

(i) b2(M) = 0,

(ii) b2(M) = 2, i.e. r = −1, p = −q ∈ ]0, 1[ or

(iii) b2(M) = 4, i.e. r = q = −1, p = 1.

Moreover, there exist p, q, r as above satisfying (i), (ii) resp. (iii) suh that Gp,q,r
5.7

admits a lattie.

Proof. We suppress the sub- and supersripts of G and g.

a) Assume, there is a lattie in G and denote the orresponding solvmanifold

by M . Sine g is ompletely solvable, the inlusion of the Chevallier-Eilenberg

omplex

(∧
(x1, . . . , x5), δ

)
into the forms on M indues an isomorphism on o-

homology. Moreover, the minimal model of

(∧
(x1, . . . , x5), δ

)
is isomorphi to

the minimal model of M .

δ is given by

δx1 = −x15, δx2 = −p x25, δx3 = −q x35, δx4 = −r x45, δx5 = 0.

(Here we write xij for xixj .) This implies b1(M) = 1.
One omputes the di�erential of the non-exat generators of degree two in the

Chevalley-Eilenberg omplex as

δx12 = (1 + p) x125, δx13 = (1 + q) x135, δx14 = (1 + r) x145,
δx23 = (p+ q) x235, δx24 = (p+ r) x245, δx34 = (q + r) x345.

−1 ≤ r ≤ q ≤ p ≤ 1, pqr 6= 0 and p + q + r = −1 implies p 6= −1 and q 6= −r
and a short omputation yields that either (i), (ii) or (iii) holds.

In eah ase, we determine the 2-minimal model, i.e. the minimal model up

to generators of degree two and will see, that these generators are losed. By
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De�nition 1.1.4, the minimal model then is 2-formal and Theorem 1.1.6 implies

the formality of M .

If we are in ase (i), the minimal model has one losed generator of degree

one, and no generator of degree two.

If we are in ase (ii), we have r = −1, p = −q ∈ ]0, 1[,

δx12 = (1 + p)x125 6= 0, δx13 = (1− p)x135 6= 0, δx14 = 0,
δx23 = 0, δx24 = (p− 1) x245 6= 0, δx34 = (−1− p) x345 6= 0,

H1(M,R) ∼= 〈[x5]〉,
H2(M,R) ∼= 〈[x14], [x23]〉,

and the 2-minimal model ρ : (
∧
V ≤2, d) →

(∧
(x1, . . . , x5), δ

)
is given by

ρ(y) = x5, |y| = 1, dy = 0;
ρ(z1) = x14, |z1| = 2, dz1 = 0;
ρ(z2) = x23, |z2| = 2, dz2 = 0.

Note, further generators of degree ≤ 2 do not our, sine y2 = 0 (by graded

ommutativity) and ρ(yzi) is losed and non-exat. Here we use the onstrution

of the minimal model that we have given in the proof of Theorem 1.1.2.

Case (iii) is similar to ase (ii).

b) Now, we show that there are examples for eah of the three ases. In ase

(i), we follow [38℄ and onsider the matrix




1 0 0 −2
1 2 0 −3
0 1 3 5
0 0 1 2


 . It su�es to show

that there are t1 ∈ R \ {0}, −1 < r < q < p < 1 with pqr 6= 0, p 6= −q, p 6= −r,
q 6= −r and p+ q + r = −1 suh that

µ(t1) = expGL(4,R)(t1 ad(X5)|n) =




e−t1 0 0 0
0 e−pt1 0 0
0 0 e−qt1 0
0 0 0 e−rt1




is onjugate to the matrix above, whih has P (X) = X4−8X3+18X2−10X+1
as harateristi polynomial. P has four distint roots λ1, . . . , λ4 with λ1 ≈ 0, 12,
λ2 ≈ 0, 62, λ3 ≈ 2, 79 and λ4 ≈ 4, 44. De�ne t1 := − ln(λ1) and p, q, r by

e−pt1 = λ2, e
−qt1 = λ3 and e

−rt1 = λ4. Then t1, p, q, r have the desired properties.

In ase (ii), regard the matrix




0 0 0 −1
1 0 0 10
0 1 0 −23
0 0 1 10


 whih is onjugate to

µ(t1) =




e−t1 0 0 0
0 e−pt1 0 0
0 0 ept1 0
0 0 0 et1


 for t1 = 2 ln(3+

√
5

2
) and p = 1

2
sine both
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matries have the same harateristi polynomial whih has four distint real

roots.

In ase (iii), regard the matrix




3 0 −1 0
0 3 0 −1
1 0 0 0
0 1 0 0


 whih is onjugate to

µ(t1) =




e−t1 0 0 0
0 e−t1 0 0
0 0 et1 0
0 0 0 et1


 for t1 = ln(3+

√
5

2
) sine both matries have the

same minimal polynomial by Proposition B.8 (ii). �

We have seen that a non-formal solvmanifold is a non-toral nilmanifold in

dimensions three and four. In higher dimensions this is no longer true as the

following proposition shows:

Proposition 3.7.2.2. The ompletely solvable Lie group G−1
5.8 admits a lattie.

Moreover, for eah lattie Γ the orresponding solvmanifold M = G−1
5.8/Γ has

b1(M) = 2 and is not formal.

Proof. Again, we suppress the sub- and supersripts. G admits a lattie sine

µ(t) = expGL(4,R)(t ad(X5)|n) =




1 −t 0 0
0 1 0 0
0 0 e−t 0
0 0 0 et


 and




0 0 0 −1
1 0 0 5
0 1 0 −8
0 0 1 5


 are

onjugated for t1 = ln(3+
√
5

2
). Note that the transformation matrix T ∈ GL(4,R)

with TAT−1 = µ(t1) is

T =




1 0 −1 −2
1

ln( 3+
√

5

2
)

1

ln( 3+
√

5

2
)

1

ln( 3+
√

5

2
)

1

ln( 3+
√

5

2
)

−5+3
√
5

10
− 1√

5
5−3

√
5

10
3
2
− 7

2
√
5

−5+3
√
5

10
1√
5

5+3
√
5

10
3
2
+ 7

2
√
5



.

Now, let Γ be an arbitrary lattie inG. By ompletely solvability and Theorem

3.2.11 (ii), we get the minimal model of M = G/Γ as the minimal model M of

the Chevalley-Eilenberg omplex (
∧

g∗, δ). The latter is given by

δx1 = −x25, δx2 = 0, δx3 = −x35, δx4 = x45, δx5 = 0,

whih implies b1(M) = 2. Further, the minimal model ρ : (
∧
V, d) → (

∧
g∗, δ)

must ontain two losed generators y1, y2 whih map to x2 and x5. Then we

have ρ(y1y2) = x25 = −δx1 and the minimal model's onstrution in the proof

of Theorem 1.1.2 implies that there is another generator u of degree one suh

that ρ(u) = −x1 and du = y1y2. Sine ρ(uy1) = −x12 and ρ(uy2) = −x15 are
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losed and non-exat, there are no further generators of degree one in V . But

this implies that (u+ c) y1 is losed and non-exat in M for eah losed element

c of degree one. Using the notation of Theorem 1.1.5, we have u ∈ N1, y1 ∈ V 1

and M is not formal. �

Proposition 3.7.2.3. The ompletely solvable Lie group Gp,−2−p
5.9 , p ≥ −1, does

not admit a lattie.

Proof. The �rst half of the proof is taken from [38℄. Assume there is a lattie.

µ(t) =




e−t −te−t 0 0
0 e−t 0 0
0 0 e−tp 0
0 0 0 et(2+p)


 is onjugate to an element of SL(4,Z) for

t = t1 6= 0 and has roots e−t1 , e−t1 , e−t1p
and et1(2+p)

. By Proposition B.6, this

an our if and only if p = −1. Therefore, for the remainder of the proof we

assume p = −1.

The Jordan form of µ(t1) is




e−t 1 0 0
0 e−t 0 0
0 0 et 0
0 0 0 et


, i.e. the harateristi and

the minimal polynomial of µ(t1) are

P (X) = (X − e−t1)2(X − et1)2

= X4 − 2(e−t1 + et1)X3 + (e−2t1 + e2t1 + 4)X2 − 2(e−t1 + et1)X + 1,

m(X) = (X − e−t1)2(X − et1)

= X3 − (2e−t1 + et1)X2 + (e−2t1 + 2)X − e−t1 .

Sine µ(t1) is onjugate to an integer matrix, we have P (X), m(X) ∈ Z[X ] by
Theorem B.3. This is impossible for t1 6= 0. �

Proposition 3.7.2.4 ([38℄). The ompletely solvable Lie group G−3
5.11 does not

admit a lattie.

Proof. If the group admits a lattie, there exists t1 ∈ R \ {0} suh that

the harateristi polynomial of µ(t1) =




e−t1 −t1e−t1 t2
1

2
e−t1 0

0 e−t1 −t1e−t1 0
0 0 e−t1 0
0 0 0 e3t1


 is a

moni integer polynomial with a three-fold root e−t1
and a simple root e3t1 . By

Proposition B.6, this is impossible for t1 6= 0. �

Proposition 3.7.2.5. There are q, r ∈ R with −1 ≤ q < 0, q 6= −1
2
, r 6= 0 suh

that G−1−2q,q,r
5.13 admits a lattie.
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Proof. We have µq,r(t) =




e−t 0 0 0
0 et+2qt 0 0
0 0 e−qt cos(rt) −e−qt sin(rt)
0 0 e−qt sin(rt) e−qt cos(rt)


 and

as laimed in [38℄, there exist t1 6= 0, q0, r0 suh that µq0,r0(t1) is onjugate to

A :=




1 0 0 1
1 2 0 2
0 1 3 0
0 0 1 0


 whih implies the existene of a lattie ΓA in G−1−2q0,q0,r0

5.13 .

If λ1 ≈ 0, 15 < λ2 ≈ 3, 47 denote the real roots and λ3,4 ≈ 1, 17 ± i 0, 67 the

non-real roots of PA(X) = X4−6X3+11X2−8X+1, then t1 = − ln(λ1) ≈ 1, 86,

q0 =
1
2
( ln(λ2)

t1
− 1) ≈ −0, 16 and r0 =

1
t1
arccos

(
Re(λ3)e

q0t1
)
≈ 0, 27. �

Remark. If the real number

π
t1r0

is not rational, then Theorems 3.2.11 (iii) and

3.3.8 enable us to show that the manifold G−1−2q0,q0,r0
5.13 /ΓA has b1 = 1 and is

formal.

Proposition 3.7.2.6. There exists r ∈ R\{0} suh that G−1,0,r
5.13 admits a lattie.

Proof. Let t1 = ln(3+
√
5

2
), r = π/t1 and A =




3 1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 −1


. Then A

is onjugate to µ0,r(t1) =




e−t1 0 0 0
0 et1 0 0
0 0 cos(rt1) sin(rt1)
0 0 sin(rt1) cos(rt1)


 and this implies the

existene of a lattie.

Note that we have TAT−1 = µ0,r(t1), where T =




1 18+8
√
5

7+3
√
5

0 0

1 2
3+

√
5

0 0

0 0 1 0
0 0 0 1


. �

Remark. Sine the abelianisation of the lattie in the last proof is isomorphi

to Z⊕ Z2
2
, the onstruted solvmanifold has b1 = 1.

Proposition 3.7.2.7. G0
5.14 admits a lattie.

Proof. We have µ(t) =




1 −t 0 0
0 1 0 0
0 0 cos(t) − sin(t)
0 0 sin(t) cos(t)


. Let t1 = π

3
, then µ(t1)

is onjugate to




1 0 0 0
1 1 0 0
0 1 1 −1
0 0 1 0


, so there is a lattie. Note that the matrix
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T =




−1 1 0 0
−π

3
0 0 0

− 1√
3

− 1√
3

2√
3

− 1√
3

1 −1 0 1


 ∈ GL(4,R) satis�es TAT−1 = µ(t1). �

Remark. The abelianisation of the lattie in the last proof is isomorphi to Z2
,

i.e. the orresponding solvmanifold has b1 = 2.

Proposition 3.7.2.8. If there is a lattie Γ in the Lie group G := G0
5.14 suh

that b1(G/Γ) = 2, then G/Γ is not formal.

Proof. By Theorem 3.2.11(i), the natural inlusion of the Chevalley-Eilenberg

omplex (
∧

g∗, δ) → (Ω(G/Γ), d) indues an injetion on ohomology. (
∧

g∗, δ)
is given by

δx1 = −x25, δx2 = 0, δx3 = −x45, δx4 = x35, δx5 = 0.

This implies b1(
∧
g∗, δ) = 2, hene H1(G/Γ,R) = 〈[x2], [x5]〉. Therefore

[x2] ·H1(G/Γ,R) +H1(G/Γ,R) · [x5] = 〈[x25]〉 = 〈[δx1]〉 = 0,

and in the Massey produt 〈[x2], [x2], [x5]〉 = [−x15] is no indeterminay. Sine

x15 is losed and not exat, G/Γ annot be formal. �

Proposition 3.7.2.9. The ompletely solvable Lie group G−1
5.15 admits a lattie.

For eah lattie the orresponding solvmanifold satis�es b1 = 1 and is non-formal.

Proof. As we have done above, we suppress the sub- and supersripts. First,

we follow [38℄ and onsider the matrix A :=




2 0 0 −1
1 2 0 2
0 1 1 2
0 0 1 1


 whih is on-

jugate to µ(t1) =




e−t1 −t1e−t1 0 0
0 e−t1 0 0
0 0 et1 −t1et1
0 0 0 et1


 for t1 = ln(3+

√
5

2
). This im-

plies the existene of a lattie. The transformation matrix T ∈ GL(4,R) with
TAT−1 = µ(t1) is

T =




2
5
√
5

− 1
5
√
5

− 2
5
√
5

1
2
+ 3

50

√
5

− 3+
√
5

10 ln( 3+
√

5

2
)

2+
√
5

5 ln( 3+
√

5

2
)

− (3+
√
5)2

20 ln( 3+
√

5

2
)

2+
√
5

5 ln( 3+
√

5

2
)

− 2
5
√
5

1
5
√
5

2
5
√
5

1
2
− 3

50

√
5

− 2

5(3+
√
5) ln( 3+

√
5

2
)

− −1+
√
5

5(3+
√
5) ln( 3+

√
5

2
)

−3+
√
5

5(3+
√
5) ln( 3+

√
5

2
)

− −1+
√
5

5(3+
√
5) ln( 3+

√
5

2
)



.
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Let Γ be an arbitrary lattie in G. By ompletely solvability and Theorem

3.2.11 (ii), we get the minimal model of M = G/Γ as the minimal model M of

the Chevalley-Eilenberg omplex (
∧

g∗, δ). The latter is given by

δx1 = −x15 − x25, δx2 = −x25, δx3 = x35 − x45, δx4 = x45, δx5 = 0,

whih implies b1(M) = 1.
One omputes the di�erential of the non-exat generators of degree two in the

Chevalley-Eilenberg omplex as

δx12 = 2x125, δx13 = x145 + x235, δx14 = x245,

δx23 = x245, δx24 = 0, δx34 = −2x345.

The minimal model ρ : (
∧
V, d) → (

∧
g∗, δ) must ontain three losed generators

y, z1, z2 whih map to x5, x14 − x23 and x24. We see ρ(yz1) = x145 − x235 is losed
and non-exat, ρ(yz2) = x245 = δx23 and the minimal model's onstrution in the

proof of Theorem 1.1.2 implies that there is another generator u of degree two

suh that ρ(u) = x23 and du = yz2. Sine ρ(uy) = x235 is losed and non-exat,

there are no further generators of degree less than or equal to two in V . But this
implies that (u+ c) y is losed and non-exat in M for eah losed element c of
degree two. Using the notation of Theorem 1.1.5, we have u ∈ N2, y ∈ V 1

and

M is not formal. �

Proposition 3.7.2.10 ([38℄). G−1,q
5.16 , q 6= 0, does not admit a lattie.

Proof. If the group admits a lattie, there exists t1 ∈ R\{0} suh that the har-

ateristi polynomial of µ(t1) =




e−t1 −t1e−t1 0 0
0 e−t1 0 0
0 0 et1 cos(t1q) −et1 sin(t1q)
0 0 et1 sin(t1q) et1 cos(t1q)


 is

a moni integer polynomial with simple roots et1(cos(t1q)±i sin(t1q)) and a double
root e−t1

. By Proposition B.6, this is impossible for t1 6= 0. �

Proposition 3.7.2.11. There are p, r ∈ R, p 6= 0, r /∈ {0,±1}, suh that Gp,−p,r
5.17

admits a lattie.

Proof. We follow [38℄ and onsider A :=




2 0 0 −11
1 2 0 −9
0 1 1 −1
0 0 1 1


. A is onjugate to

µ(t1) =




e−t1p cos(t1) −e−t1p sin(t1) 0 0
e−t1p sin(t1) e−t1p cos(t1) 0 0

0 0 et1p cos(t1r) −et1p sin(t1r)
0 0 et1p sin(t1r) et1p cos(t1r)


 for ertain

t1, p, r 6= 0, i.e. there is a lattie.
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If λ1,2 ≈ 0, 306 ± i 0, 025 and λ3,4 ≈ 2, 694 ± i 1, 83 denote the roots of

PA(X) = X4 − 6X3 + 14X2 − 7X + 1, one has t1p = − ln(|λ1|) ≈ 1, 181, hene
t1 = arccos

(
Re(λ1)e

t1p
)
≈ 0, 062, p ≈ 14, 361. t1r = arccos

(
Re(λ3)e

t1p
)
≈ 0, 597

implies r ≈ 7, 259. �

Remark. Sine the abelianisation of the lattie in the last proof is isomorphi

to Z⊕ Z3, the orresponding solvmanifold has b1 = 1.

Proposition 3.7.2.12. There exists p ∈ R \ {0} suh that Gp,−p,±1
5.17 admits a

lattie.

Proof. Let p := 1
π
ln(3+

√
5

2
), t1 := π and A :=




0 −1 0 0
1 −3 0 0
0 0 0 −1
0 0 1 −3


. Then

µ(t1) =




e−t1p cos(t1) −e−t1p sin(t1) 0 0
e−t1p sin(t1) e−t1p cos(t1) 0 0

0 0 et1p cos(±t1) −et1p sin(±t1)
0 0 et1p sin(±t1) et1p cos(±t1)


 is on-

jugate to A and this implies the existene of a lattie. Note that we have

TAT−1 = µ(t1) with T :=




1√
5

5−3
√
5

10
0 0

0 0 1√
5

5−3
√
5

10

− 1√
5

5+3
√
5

10
0 0

0 0 − 1√
5

5+3
√
5

10



. �

Remark. The abelianisation of the lattie in the last proof is Z ⊕ Z3
2
, i.e. the

orresponding solvmanifold has b1 = 1.

Proposition 3.7.2.13. There exists r ∈ R \ {0,±1} suh that G0,0,r
5.17 admits a

lattie.

Proof. Let r ∈ {2, 3}. Then µ(t) =




cos(t) sin(t) 0 0
sin(t) cos(t) 0 0
0 0 cos(tr) sin(tr)
0 0 sin(tr) cos(tr)


 is

an integer matrix for t = π. This implies the existene of a lattie. �

Remark. If we hose in the last proof r = 2, then the orresponding solvmanifold

has b1 = 3. For r = 3 we obtain a solvmanifold with b1 = 1.

Proposition 3.7.2.14. G0,0,±1
5.17 admits a lattie.

Proof. µ(t) =




cos(t) sin(t) 0 0
sin(t) cos(t) 0 0
0 0 cos(±t) sin(±t)
0 0 sin(±t) cos(±t)


 is an integer matrix for

t = π. This implies the existene of a lattie. �
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Remark. The �rst Betti number of the solvmanifold indued by the lattie of

the last proof equals one.

Proposition 3.7.2.15. G0
5.18 admits a lattie.

Proof. Again, we follow [38℄. The matrix




2 0 0 −9
1 0 0 −4
0 1 0 −3
0 0 1 0


 is onjugate to

µ(t1) =




cos(t1) − sin(t1) −t1 cos(t1) t1 sin(t1)
sin(t1) cos(t1) −t1 sin(t1) −t1 cos(t1)

0 0 cos(t1) − sin(t1)
0 0 sin(t1) cos(t1)


 for t1 =

π
3
. This implies

the existene of a lattie.

Note, T =




4
3
√
3

− 2√
3

0 − 1√
3

0 0 0 1√
3
π

−2
√
3

π
−

√
3
π

√
3

π
1
π

0 − 3
π

− 3
π


 ∈ GL(4,R) is the transformation

matrix with TAT−1 = µ(t1). �

Remark. The abelianisation of the lattie in the last proof is isomorphi to Z,
i.e. the orresponding solvmanifold has b1 = 1.

Algebras with nilradial n := g3.1 ⊕ g1 = 〈X1, . . . , X4 | [X2, X3] = X1〉
We now regard the unimodular almost-nilpotent Lie groups G5.i with nilradial

N := U3(R)× R, i.e. i ∈ {19, 20, 23, 25, 26, 28}. We an identify N with R4
as a

manifold and the group law given by

(a, b, c, r) · (x, y, z, w) = (a+ x+ bz , b+ y , c + z , r + w).

The Lie algebras of the unimodular Lie groups G5.i = R⋉µi
N with nilradial

N are listed in Table A.5. We have µi(t) = expN ◦ expA(n)(t ad(X5))◦ logN , where
X5 depends on i.

Assume there is a lattie Γ in G5.i. By Corollary 3.3.5, there are t1 6= 0 and

an inner automorphism In1
of N suh that νi := µi(t1)◦ In1

, ν−1
i ∈ A(N) preserve

the lattie ΓN := Γ ∩N in N . For n1 = (a, b, c, r) one alulates

In1
(x, y, z, w) = (x+ bz − yc , y , z , w). (3.8)

ΓN ′ := ΓN ∩ N ′ ∼= Z is a lattie in N ′ := [N,N ] = {(x, 0, 0, 0) | x ∈ R} ∼= R by

Theorem 3.1.4 and sine νi(ΓN ′), ν−1
i (ΓN ′) ⊂ ΓN ′

, we have νi|ΓN′ ∈ Aut(Z). This
implies νi|ΓN′ = ±id and hene µi(t1)|[N,N ] = ±id (a ause of (3.8) and the shape

of [N,N ]). Moreover, we have [n, n] = 〈X1〉 and sine expR
is the identity,

±id = µi(t1)|[N,N ] = expA(n)(t1 ad(X5)|n)|[N,N ].
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(Note that expN([n, n]) = [N,N ] by [76, Theorem 3.6.2℄.) Therefore, t1[X5, X1]
has no omponent in 〈X1〉 and sine t1 6= 0, this means that [X1, X5] has no

omponent in X1-diretion. The list of Lie algebras in Table A.5 implies:

Proposition 3.7.2.16. The only onneted and simply-onneted solvable Lie

groups with nilradial U3(R)×R that an ontain a lattie are G−1
5.20 and G

0,±1
5.26 . �

Proposition 3.7.2.17. G−1
5.20 admits a lattie. For eah lattie the orresponding

solvmanifold admits a ontat form, is formal and has b1 = 2.

Proof. Using Theorem 3.1.1, one shows that

γ1 := (
20 + 9

√
5

9 + 4
√
5
, 0, 0, 0),

γ2 := (
181 + 81

√
5

47 + 21
√
5
,
18 + 8

√
5

7 + 3
√
5
,

2

3 +
√
5
, 0),

γ3 := (
181 + 81

√
5

47 + 21
√
5
, 1, 1, 0),

γ4 := (0, 0, 0,− 20 + 9
√
5

(9 + 4
√
5) ln(3+

√
5

2
)
)

generate a lattie ΓN in N with [γ2, γ3] = γ1 and γ1, γ4 entral.
A short alulation yields that µ(t)

(
(x, y, z, w)

)
= (x−tw, e−ty, etz, w) de�nes

a one-parameter group in A(N). Moreover, for t1 = ln(3+
√
5

2
) holds µ(t1)(γ1) = γ1,

µ(t1)(γ2) = γ3, µ(t1)(γ3) = γ−1
2 γ33 and µ(t1)(γ4) = γ1γ4.

This implies the existene of a lattie in G := G−1
5.20 = R⋉µ N .

Let Γ be an arbitrary lattie in G. By ompletely solvability and Theorem

3.2.11 (ii), we get the minimal model of M = G/Γ as the minimal model M of

the Chevalley-Eilenberg omplex (
∧

g∗, δ). The latter is given by

δx1 = −x23 − x45, δx2 = −x25, δx3 = x35, δx4 = δx5 = 0,

whih implies b1(M) = 2. Moreover, x1 de�nes a left-invariant ontat form on

G/Γ.
One omputes the di�erential of the non-exat generators of degree two in the

Chevalley-Eilenberg omplex as

δx12 = x125 − x245, δx13 = −x135 − x345, δx14 = −x234,
δx15 = −x235, δx23 = 0, δx24 = x245,

δx34 = −x345, δx45 = 0.

The minimal model ρ : (
∧
V, d) → (

∧
g∗, δ) must ontain two losed generators

y1, y2 whih map to x4 and x5. We see ρ(y1y2) = x45 is losed and non-exat.

Sine b2(G/Γ) = 1, the minimal model's onstrution in the proof of Theorem

1.1.2 implies that there are no further generators of degree less than or equal to

two in V . This implies that G/Γ is formal. �
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Proposition 3.7.2.18. G0,ε
5.26 admits a lattie for ε = ±1. For eah lattie the

orresponding solvmanifold is ontat and has b1 ≥ 2.

Proof. One alulates that µ : R → A(N) de�ned by

µ(t)
(
(x, y, z, w)

)

=
(
x+ ht(y, z)− εtw, cos(tπ) y − sin(tπ) z, sin(tπ) y + cos(tπ) z, w

)
,

where ht(y, z) = 1
2
sin(tπ)

(
cos(tπ)

(
y2 − z2

)
− 2 sin(tπ)yz

)
, is a one-parameter

group.

Then we have G := G0,ε
5.26 = R⋉µN and Z⋉µ {(x, y, z, w) ∈ N | x, y, z, w ∈ Z}

is a lattie in G sine µ(1)
(
(x, y, z, w)

)
= (x− εw,−y,−z, w).

Using de(µ(t)) = logN ◦µ(t) ◦ expN
, we obtain the Lie algebra g of G as

〈X1, . . .X5 | [X2, X3] = X1, [X2, X5] = X3, [X3, X5] = −X2, [X4, X5] = εX1〉.

Denote {x1, . . . , x5} the basis of g∗ whih is dual to {X1, . . . , X5}, i.e. the xi are
left-invariant 1-forms on G. One alulates that x1 is a left-invariant ontat form
on G, so it desends to a ontat form on the orresponding solvmanifold.

The statement about the �rst Betti number follows from Theorem 3.2.11(i). �

Remark. Sine the abelianisation of the lattie in the last proof is isomorphi

to Z2 ⊕ Z2
2, the orresponding solvmanifold has b1 = 2.

Algebras with nilradial g4.1 = 〈X1, . . . , X4 | [X2, X4] = X1, [X3, X4] = X2〉
Proposition 3.7.2.19. No onneted and simply-onneted solvable Lie group

G5.i with nilradial N := G4.1 admits a lattie.

Proof. There is only one unimodular onneted and simply-onneted solvable

Lie group with nilradial G4.1, namely the ompletely solvable group G := G
− 4

3

5.30.

We show that it admits no lattie.

The group N is R4
as a manifold with multipliation given by

(a, b, c, r) · (x, y, z, w) = (a+ x+ wb+
1

2
w2c , b+ y + wc , c+ z , r + w),

and one alulates for n1 = (a, b, c, r)

In1
(x, y, z, w) = (x+ wb+

1

2
w2c− ry − rwc+

1

2
r2z , y + wc− rz , z , w).

Let G = R ⋉µ N , where µ(t) = expN ◦ expA(n)(t ad(X5)|n) ◦ logN and assume

there is a lattie Γ in G. By Corollary 3.3.5, there are t1 6= 0 and n1 ∈ N suh

that ν := µ(t1) ◦ In1
∈ A(N) preserves the lattie ΓN := Γ ∩N in N .



3.7. FIVE-DIMENSIONAL SOLVMANIFOLDS 63

ΓN ′ := N ′∩ΓN is a lattie in N ′ := [N,N ] = {(x, y, 0, 0) ∈ N | x, y ∈ R} ∼= R2

by Theorem 3.1.4, and sine ν(N ′) ⊂ N ′
, this lattie is preserved by ν|N ′

. This

and expR2

= id imply

±1 = det(ν|N ′) = det
(
expA(n)(t1 ad(X5)|n)|[N,N ]

)
· det(In1

|N ′)︸ ︷︷ ︸
= 1

,

i.e. ad(X5)|[n,n] has trae equal to zero. This and [n, n] = 〈X1, X2 | 〉 ontradits
g
− 4

3

5.30, see Table A.6. �

Non-almost nilpotent algebras

Now, there remain two unimodular onneted and simply-onneted solvable Lie

groups in dimension �ve, namely G−1,−1
5.33 and G−2,0

5.35 . Unfortunately, we do not

know whether the former group admits a lattie or not. Note, Harshavardhan's

argumentation in [38, p. 33℄ is not su�ient.

Remark. If the ompletely solvable Lie group G−1,−1
5.33 admits a lattie, one easily

proves that the orresponding solvmanifold admits a ontat form (sine G−1,−1
5.33

possesses the left-invariant ontat form x1 + x2 + x3 with xi dual to Xi ∈ g
−1,−1
5.33

as in Table A.7), is formal and has b1 = 2.

Remark. In April 2009, A. Diatta and B. Foreman proved that G−1,−1
5.33 possesses

a lattie.

Proposition 3.7.2.20. G−2,0
5.35 ontains a lattie. For eah lattie the orrespond-

ing solvmanifold is ontat and has b1 ≥ 2.

Proof. A lattie and a ontat form were onstruted by Geiges in [32℄. One

has the left-invariant ontat form x1+x2 on the Lie group, where x1, x2 are dual
to the left-invariant vetor �elds as in Table A.7. Hene the form desends to

eah ompat quotient by a disrete subgroup.

The statement about the �rst Betti number follows from Theorem 3.2.11(i). �

Conlusion

We have seen that eah onneted and simply-onneted 5-dimensional solvable

Lie group admits a lattie if it is nilpotent or deomposable with the exeption

of G4.2 × R. If an indeomposable non-nilpotent group G5.i gives rise to a solv-

manifold it is ontained in Table 3.3. Reall, by Theorem 3.2.11, we always have

a lower bound for the solvmanifold's Betti numbers and in some ases the exat

value. These an be read of in the seond and the third olumn. The last olumn

refers to the examples that we have onstruted above. �yes� means that we have

suh for ertain parameters that satisfy the onditions of the olumn �Comment�.

Exept for i = 33 we have examples for all possible values of i.
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Table 3.3: 5-dimensional indeomposable non-nilmanifolds

b1 b2 formal Comment Example

Gp,q,r
5.7 1 0 yes −1 < r < p < q < 1, 3.7.2.1 (i)

pqr 6= 0,
p+ q + r = −1

Gp,q,−1
5.7 1 2 yes p = −q ∈]0, 1[ 3.7.2.1 (ii)

G1,−1,−1
5.7 1 4 yes 3.7.2.1 (iii)

G−1
5.8 2 3 no 3.7.2.2

G−1−2q,q,r
5.13 ≥ 1 ≥ 0 ? q ∈ [−1, 0] \ {1

2
}, 3.7.2.5

r 6= 0

G−1,0,r
5.13 ≥ 1 ≥ 2 ? r 6= 0 3.7.2.6

G0
5.14 ≥ 2 ≥ 3 ? 3.7.2.7

G−1
5.15 1 2 no 3.7.2.9

Gp,−p,r
5.17 ≥ 1 ≥ 0 ? p 6= 0, r /∈ {0,±1} 3.7.2.11

Gp,−p,±1
5.17 ≥ 1 ≥ 2 ? p 6= 0 3.7.2.12

G0,0,r
5.17 ≥ 1 ≥ 2 ? r /∈ {0,±1} 3.7.2.13

G0,0,±1
5.17 ≥ 1 ≥ 4 ? 3.7.2.14

G0
5.18 ≥ 1 ≥ 2 ? 3.7.2.15

G−1
5.20 2 1 yes 3.7.2.17

G0,±1
5.26 ≥ 2 ≥ 1 ? 3.7.2.18

G−1,−1
5.33 2 1 yes no

G−2,0
5.35 ≥ 2 ≥ 1 ? 3.7.2.20

Assuming that there is a lattie in one the non-ompletely solvable Lie groups

G5.i, i.e. i ∈ {13, 14, 17, 18, 26, 35}, suh that the inequalities in the table on

page 64 are equalities, then one an alulate that suh quotients are formal for

i ∈ {13, 17, 26, 35} and not formal for i ∈ {14, 18}. The assumptions about the

Betti numbers are needed to ensure that the Lie algebra ohomology is isomorphi

to the solvmanifold's ohomology.

3.7.3 Contat strutures

Some of the onneted and simply-onneted �ve-dimensional solvable Lie groups

G5.i whih admit a lattie Γ possess a left-invariant ontat form. Obviously, it

also de�nes a ontat form on the orresponding solvmanifold. By this way,

we showed that the manifolds G5.i/Γ for i ∈ {4, 5, 6} and quotients of almost

nilpotent groups with non-abelian nilradial (i.e. i ≥ 19) by latties are ontat.

But R5
, U3(R) × R2

, G4.1 × R and G5.i do not have a left-invariant ontat

form for i ∈ {1, 2, 3, 7, . . . , 18}, see e.g. [17℄. For some of the nilmanifolds, we an

provide a ontat struture by another approah.
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Theorem 3.7.3.1. Let G ∈ {R5, U3(R)×R2, G4.1×R, G5.1, G5.3} and Γ a lattie

G. Then G/Γ admits a ontat struture.

Proof. For G hosen as in the theorem, the dimension of the enter is greater

than or equal to two. Therefore, we an �nd a two-dimensional losed normal

subgroup that lies in the enter suh that its intersetion with Γ is a lattie in it.

By Theorem 3.2.6, G/Γ has the struture of a prinipal T 2
-bundle over a three

dimensional losed orientable manifold. Then the following result of Lutz implies

the laim. �

Theorem 3.7.3.2 ([51℄). The total spae of a prinipal T 2
-bundle over a losed

orientable 3-manifold admits a ontat form. �

Unfortunately, we did not �nd a ontat struture on the manifold of Propo-

sition 3.7.2.9. If suh exists, this yields a �ve-dimensional non-formal ontat

solvmanifold with b1 = 1.

3.8 Six-dimensional solvmanifolds

There are 164 types of onneted and simply-onneted indeomposable solv-

able Lie groups in dimension six, most of them depending on parameters. For

lassifying six-dimensional solvmanifolds, we restrit ourselves to the following

types:

(a) nilmanifolds,

(b) sympleti solvmanifolds that are quotients of indeomposable groups whih

are not nilpotent,

() produts of lower-dimensional solvmanifolds.

Although we have to make some restritions to get a manageable number of

ases, one ertainly has to onsider types (a) and (). Conerning the third type,

the reader an even ask the legitimate question why we do not onsider arbitrary

latties in produts of lower dimensional solvable Lie groups G1, G2, instead of

diret produts Γ1×Γ2 of latties Γi in the fators Gi. The reason is that we have

no tool to onstrut arbitrary latties or disprove their existene, unless we an

ensure that they ontain the semidiret fator Z. (When we wanted to investigate

G−1,−1
5.33 , we already had this problem.)

The further restrition in (b) is justi�ed by the large number of indeompos-

able non-nilpotent solvable Lie algebras in dimension six: There are 140 types of

it. The author has deided to onsider the most interesting among them. Sine

we are not able to refute a sympleti form's existene in the non-ompletely

solvable ase, we shall partly make even more restritions.
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3.8.1 Nilmanifolds

There are 34 isomorphism lasses of nilpotent Lie algebras in dimension six.

Eah of them possesses a basis with rational struture onstants and therefore

determines a nilmanifold. They are listed on page 67 in Table 3.4 whih is taken

from [68℄. The orresponding Lie algebras are listed in Appendix A. Among the

34 lasses of nilmanifolds, there are 26 whih admit a sympleti form.

Reall that a nilmanifold is formal or Kählerian if and only if the orrespond-

ing Lie algebra is abelian.

3.8.2 Candidates for the existene of latties

Among the 61 types of indeomposable unimodular almost nilpotent Lie algebras

in dimension six that are listed in Tables A.10 � A.23, there are some that annot

be the Lie algebra of a onneted and simply-onneted Lie group whih admits

a lattie.

Instead of the small German letters for the Lie algebras in the mentioned

tables, we use again apital Latin letters with the same subsripts for the orre-

sponding onneted and simply-onneted Lie groups. If any, we hose the same

designation for the parameters a, b, c, h, s, ε of G6.i as for their Lie algebras.

Proposition 3.8.2.1. Let i ∈ {13, . . . , 38}, i.e. Nil(G6.i) = U3(R) × R2
. Then

it is neessary for G6.i to ontain a lattie that one of the following onditions

holds:

i = 13, a = −b 6= 0, h = −1; i = 15; i = 18, a = −1;
i = 21, a = 0; i = 23, a = 0; i = 25, b = 0;
i = 26; i = 29, b = 0; i = 32, a = ε = 0 < h;
i = 33, a = 0; i = 34, a = 0; i = 35, a = −b 6= 0, c = 0;
i = 36, a = 0; i = 37, a = 0, s 6= 0; i = 38.

Proof. This an be seen analogous as in the proof of Proposition 3.7.2.16.

Denote {X1, . . . , X6} the basis used for the desription of the Lie algebra in

Tabels A.12 � A.14. Then the existene of a lattie implies that [X6, X1] has no
omponent in X1-diretion and this yields the laim. �

Proposition 3.8.2.2. Let i ∈ {39, . . . , 47}, i.e. the nilradial of G6.i is G4.1×R.
If G6.i admits a lattie, then holds i = 39 ∧ h = −3 or i = 40.

Proof. Use the designationX1, . . . , X6 as above. Then 〈X1, X2〉 is the ommu-

tator of the nilradial of g6.i. Analogous as in the proof of Proposition 3.7.2.19,

one shows that ad(X6)|〈X1,X2〉 has trae equal to zero. This is only satis�ed for

i = 39 ∧ h = −3 or i = 40. �
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Table 3.4: 6-dimensional nilmanifolds

b1(G/Γ) b2(G/Γ) Comment g

6 15 Torus, sympleti 6g1

5 11 sympleti g3.1 ⊕ 3g1

5 9 not sympleti g5.4 ⊕ g1

4 9 sympleti g5.1 ⊕ g1

4 8 sympleti 2g3.1
4 8 sympleti g6.N4

4 8 sympleti g6.N5

4 7 sympleti g5.5 ⊕ g1
4 7 sympleti g4.1 ⊕ 2g1

4 6 not sympleti g6.N12

3 8 sympleti g6.N3

3 6 sympleti g6.N1

3 6 sympleti g6.N6

3 6 sympleti g6.N7

3 5 sympleti g5.2 ⊕ g1
3 5 not sympleti g5.3 ⊕ g1
3 5 sympleti g5.6 ⊕ g1
3 5 sympleti g6.N8

3 5 sympleti g6.N9

3 5 sympleti g6.N10

3 5 not sympleti g6.N13

3 5 not sympleti g16.N14

3 5 not sympleti g−1
6.N14

3 5 sympleti g6.N15

3 5 sympleti g6.N17

3 4 sympleti g6.N16

2 4 sympleti g6.N11

2 4 sympleti g16.N18

2 4 sympleti g−1
6.N18

2 3 sympleti g6.N2

2 3 sympleti g6.N19

2 3 sympleti g6.N20

2 2 not sympleti g6.N21

2 2 not sympleti g6.N22
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Proposition 3.8.2.3.

(i) Let i ∈ {54, . . . , 70}, i.e. the nilradial of G6.i is G5.1. If G6.i admits a

lattie, then holds i = 54∧ l = −1, i = 63, i = 65∧ l = 0 or i = 70∧ p = 0.

(ii) No onneted and simply-onneted almost nilpotent Lie group with nilrad-

ial G5.2 or G5.5 admits a lattie. �

Proof. This follows in the same manner as the last proposition. The trae of

ad(X6) restrited to the ommutator of the nilradial must be zero. �

3.8.3 Sympleti solvmanifolds whose �rst Betti number

equals one

If we are looking for solvmanifolds with b1 = 1, it is neessary that the orre-

sponding Lie algebra is unimodular, almost nilpotent and has b1 = 1 itself. Note

that the latter fores the algebra to be indeomposable. In Tables A.27 � A.29

on pages 115 � 117 we have listed all possible values that an arise as b1 for

the lasses of unimodular non-nilpotent solvable indeomposable Lie algebras in

dimension six.

Sine we are mainly interested in sympleti 6-manifolds, we now investigate

whih Lie algebras ontained in Tables A.10 � A.23 that satisfy b1 = 1 are o-

homologially sympleti, i.e. there is a losed element ω ∈ ∧2
g∗ suh that ω3

is

not exat.

Note, if a unimodular Lie algebra is ohomologially sympleti, then eah

ompat quotient of the orresponding Lie group by a lattie is sympleti. If

the Lie algebra is ompletely solvable, this is even neessary for the quotient to

be sympleti.

Proposition 3.8.3.1. Let g6.i be a unimodular almost-nilpotent Lie algebra with

b1(g6.i) = 1. Then we have:

g6.i is ohomologially sympleti if and only if i ∈ {15, 38, 78}.

Proof. For i ∈ {15, 38, 78} one omputes all sympleti forms up to exat

summands as

i = 15 : ω = (λ+ µ) x16 + λ x25 − µ x34, λ, µ ∈ R \ {0}, λ 6= −µ,

i = 38 : ω = λ x16+µ x24+
λ
2
x25 − λ

2
x34 +µ x35, λ, µ ∈ R, λ 6= 0,−3

2
λ3 6= 2λµ2,

i = 78 : ω = λ x14 + λ x26 + λ x35, λ ∈ R \ {0}.

If i /∈ {15, 38, 78}, then the onditions on the parameters of g6.i to ensure its

unimodularity and b1(g6.i) = 1 imply that there are no losed elements of

∧2
g∗6.i

without exat summands whih ontain one of the elements x16, x26, x36, x46 or

x56. Therefore, g6.i annot be ohomologially sympleti. �
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Remark. We give an expliit example of the argumentation in the last proof for

i = 2:
g6.2 depends on three parameters a, c, d ∈ R with 0 < |d| ≤ |c| ≤ 1 and the

brakets are given in Table A.11 as

[X1, X6] = aX1, [X2, X6] = X1 + aX2, [X3, X6] = X3,
[X4, X6] = cX4, [X5, X6] = dX5.

The ondition of unimodularity implies 2a + c + d = −1. Moreover, if �rst the

Betti number equals one, we see in Tabular A.27 that a 6= 0.
The Chevalley-Eilenberg omplex is given by

δx1 = −a x16 − x26, δx2 = −a x26, δx3 = −x36,
δx4 = −c x46, δx5 = −d x56, δx6 = 0

and sine a, c, d 6= 0, x26, x36, x46, x56 are exat. Moreover, x16 = δ(− 1
a
x1 +

1
a2
x2)

is exat, too. This implies the laim.

We now examine the three Lie groups that have ohomologially sympleti

Lie algebras.

The next theorem was announed in Chapter 2. It provides an example of

a sympleti non-formal 6-manifold with b1 = 1. Sine it is a solvmanifold, this

manifold is sympletially aspherial. Hene, we found an example for whih

K�edra, Rudyak and Tralle looked in [48, Remark 6.5℄.

Theorem 3.8.3.2.

(i) The ompletely solvable Lie group G−1
6.15 ontains a lattie.

(ii) If Γ is any lattie in G := G−1
6.15, then M := G/Γ is a sympleti and

non-formal manifold with b1(M) = 1 and b2(M) = 2.

Proof. ad (i): Let N = U3(R)×R2
denote the nilradial of G. We an identify

N with R5
as a manifold and the multipliation given by

(a, b, c, r, s) · (x, y, z, v, w) = (a+ x+ bz, b+ y, c+ z, r + v, s+ w),

i.e. [N,N ] = {(x, 0, 0, 0, 0) | x ∈ R} ∼= R and N := N/[N,N ] ∼= R4
.

By de�nition of G, we have G = R⋉µ N , where

∀t∈R µ(t) = expN ◦ expA(n)(t




0 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 −1 0 −1 0
0 0 −1 0 1



) ◦ logN , (3.9)
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and sine expR4

= id, the indued maps µ(t) : N → N are given by

µ(t)
(
(y, z, v, w)

)
= expGL(4,R)(t




−1 0 0 0
0 1 0 0
−1 0 −1 0
0 −1 0 1


)




y
z
v
w




=




e−t 0 0 0
0 et 0 0

−te−t 0 e−t 0
0 −tet 0 et







y
z
v
w


 .

One alulates that µ̃ : R → A(N) given by

∀t∈R ∀(x,y,z,v,w)∈N µ̃(t)
(
(x, y, z, v, w)

)
=
(
x, µ(t)

(
(y, z, v, w)

))
(3.10)

is a one-parameter group, and sine the derivations of (3.9) and (3.10) in zero are

equal, we have µ ≡ µ̃.

Let t1 = ln(3+
√
5

2
), then µ(t1) is onjugate to A :=




2 1 0 0
1 1 0 0
2 1 2 1
1 1 1 1


. The

transformation matrix T ∈ GL(4,R) with TAT−1 = µ(t1) is

T =




1 −2(2+
√
5)

3+
√
5

0 0

1 1+
√
5

3+
√
5

0 0

0 0 ln( 2
3+

√
5
)

2(2+
√
5) ln( 3+

√
5

2
)

3+
√
5

0 0 ln( 2
3+

√
5
) − (1+

√
5) ln( 3+

√
5

2
)

3+
√
5



.

Denote by {b1, . . . , b4} the basis of R4
for whih µ(t1) is represented by A, i.e. bi

is the i-th olumn of T . One alulates

b11b22 − b12b21 =
√
5,

bi1bj2 − bi2bj1 = 0 for i < j, (i, j) 6= (1, 2).

This implies that we have for γ0 := (
√
5, 0R4), γi := (bi0, bi) ∈ N with arbitrary

bi0 ∈ R, i = 1, . . . , 4,

[γ1, γ2] = γ0, [γ1, γ3] = [γ1, γ4] = [γ2, γ3] = [γ2, γ4] = [γ3, γ4] = eN .

We an hoose the bi0 suh that the following equations hold:

µ(t1)(γ0) = γ0,
µ(t1)(γ1) = γ21 γ2 γ23 γ4,
µ(t1)(γ2) = γ1 γ2 γ3 γ4,
µ(t1)(γ3) = γ23 γ4,
µ(t1)(γ4) = γ3 γ4.

(3.11)
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Note that (3.11) leads to the equation (id − τA)




b10
b20
b30
b40


 =




1 + 2(1+
√
5)

3+
√
5

1+
√
5

3+
√
5

0
0




whih has the (unique) solution b10 = −1+
√
5

3+
√
5
, b20 = −11+5

√
5

7+3
√
5
and b30 = b40 = 0.

We laim that t1Z ⋉µ 〈expN
(
SpanZ log

N ({γ0, . . . , γ4})
)
〉 de�nes a lattie in

G:
It su�es to show that 〈expN

(
SpanZ log

N({γ0, . . . , γ4})
)
〉 de�nes a lattie

in N , so let us prove this assertion. There exist uniquely Y0, . . . , Y4 ∈ n with

expN(Yi) = γi for i ∈ {0, . . . , 4}. If we prove that Y := {Y0, . . . , Y4} is a ba-

sis of n with rational struture onstants, then Theorem 3.1.1 (i) implies that

〈expN(SpanZY)〉 is a lattie in N .

We identify n with R5
and brakets given by the Campbell-Hausdor� formula,

see e.g. [76, Chapter 2.15℄. Sine n is 2-step nilpotent (and expN
is a di�eomor-

phism), the formula yields for all V,W ∈ n

logN
(
expN(V ) expN (W )

)
= V +W +

1

2
[V,W ].

Sine U3(R) an be onsidered as a group of matries, one an easily alulate

its exponential map. Then, its knowledge implies that the exponential map resp.

the logarithm of N is given by

expN
(
(x, y, z, v, w)

)
= (x+ 1

2
yz, y, z, v, w),

logN
(
(x, y, z, v, w)

)
= (x− 1

2
yz, y, z, v, w),

and we obtain Y0 = (
√
5, 0R4), Y1 = (b10 − 1

2
, b1), Y2 = (b20 +

(2+
√
5)(1+

√
5)

(3+
√
5)2

, b2),

Y3 = (0, b3), Y4 = (0, b4), [Y1, Y2] = Y0. The other brakets vanish.
ad (ii): Let Γ be an arbitrary lattie in G. By ompletely solvability and

Theorem 3.2.11 (ii), we get the minimal model of M = G/Γ as the minimal

model M of the Chevalley-Eilenberg omplex (
∧

g∗, δ). The latter has the losed
generator x6 and the non-losed generators satisfy

δx1 = −x23, δx2 = −x26, δx3 = x36, δx4 = −x26 − x46, δx5 = −x36 + x56,

whih implies b1(M) = 1.
One omputes the di�erential of the non-exat generators of degree two in the

Chevalley-Eilenberg omplex as

δx12 = x126, δx13 = −x136, δx14 = x126 + x146 − x234,
δx15 = x136 − x156 − x235, δx16 = −x236, δx24 = 2x246,
δx25 = x236, δx34 = −x236, δx35 = −2x356,
δx45 = x256 − x346,

i.e. b2(M) = 2.
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The minimal model ρ : (
∧
V, d) → (

∧
g∗, δ) must ontain three losed gen-

erators y, z1, z2 whih map to x6, x16 + x25 and x16 − x34. ρ(yz1) = x256 and

ρ(yz2) = −x346 are losed and not exat. But in the generation of y, z1 and z2 is
one (and up to a salar only one) element that maps onto an exat form, namely

ρ(y(z1 + z2)) = δx45. The minimal model's onstrution in the proof of Theorem

1.1.2 implies that there is another generator u of degree two suh that ρ(u) = x45
and du = y(z1 + z2). Sine ρ(yu) = x456 is losed and non-exat, there are no

further generators of degree less than or equal to two in V . But this implies for

eah losed element c of degree two that y (u+ c) is losed and non-exat in M.

Using the notation of Theorem 1.1.5, we have u ∈ N2, y ∈ V 1
and M is not

formal.

Finally, the existene of a sympleti form on G/Γ follows from Proposition

3.8.3.1. �

Proposition 3.8.3.3.

(i) Eah quotient of the Lie group G0
6.38 by a lattie is sympleti. G

0
6.38 ontains

a lattie Γ with b1(G
0
6.38/Γ) = 1.

(ii) If the Lie group G0
6.38 ontains a lattie Γ suh that M := G0

6.38/Γ satis-

�es b1(M) = 1 and b2(M) = 2, then M is a sympleti and non-formal

manifold.

Proof. The proof is similar to that of the last theorem. Therefore, we just

give a sketh of the proof.

ad (i): The existene of a sympleti form on eah quotient of G := G0
6.38 by

a lattie follows from Proposition 3.8.3.1.

The nilradial N of G is the same as in the proof of Theorem 3.8.3.2, so we

have [N,N ] = R and N = N/[N,N ] = R4
. If µ(t) : N → N is de�ned by

µ(t)
(
(y, z, v, w)

)
= expGL(4,R)(t




0 1 0 0
−1 0 0 0
−1 0 0 1
0 −1 −1 0


)




y
z
v
w




=




cos(t) sin(t) 0 0
− sin(t) cos(t) 0 0
−t cos(t) −t sin(t) cos(t) sin(t)
t sin(t) −t cos(t) − sin(t) cos(t)







y
z
v
w


 ,

one alulates that µ : R → A(N) given by

µ(t)
(
(x, y, z, v, w)

)
=

(
x− sin2(t)yz +

sin(t) cos(t)

2
(z2 − y2) + t

√
3

8
(y − z),

µ(t)
(
(y, z, v, w)

) )
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is a one-parameter group with de(µ(t)) = expA(n)(t




0 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 −1 0 −1 0
0 0 −1 0 1




︸ ︷︷ ︸
= ad(X6)|n

), i.e.

G = R ⋉µ N . (Here X6 is hosen as in the last line of Table A.14 on page 110.)

For t1 :=
π
3
we have

µ(t1)
(
(x, y, z, v, w)

)
=
(
x− 3

4
yz +

√
3

8
(z2 − y2) +

π

8
√
3
(y− z), µ(t)

(
(y, z, v, w)

))
,

and in order to onstrut a lattie in G, it is enough to onstrut a lattie in N

that is preserved by µ(t1). µ(t1) is onjugate to A :=




−1 −3 0 0
1 2 0 0
−2 −3 −1 −3
1 1 1 2




and the transformation matrix T ∈ GL(4,R) with TAT−1 = µ(t1) is

T =




√
3
π

0 0 0
− 3

π
− 6

π
0 0

0 0 − 2√
3

−
√
3

0 0 0 1


 .

Denote by {b1, . . . , b4} the basis of R4
for whih µ(t1) is represented by A, i.e. bi

is the i-th olumn of T . One alulates

b11b22 − b12b21 =
−6

√
3

π2
,

bi1bj2 − bi2bj1 = 0 for i < j, (i, j) 6= (1, 2).

This implies that we have for γ0 := (b11b22 − b12b21, 0R4), γi := (bi0, bi) ∈ N with

arbitrary bi0 ∈ R, i = 1, . . . , 4,

[γ1, γ2] = γ0, [γ1, γ3] = [γ1, γ4] = [γ2, γ3] = [γ2, γ4] = [γ3, γ4] = eN .

If we set b10 = 1488
√
3+72

√
3π−19

√
3π2+4π3

128π2 , b20 = 2736
√
3+216

√
3π−25

√
3π2+12π3

128π2 and

b30 = b40 = 0, we obtain

µ(t1)(γ0) = γ0,
µ(t1)(γ1) = γ−1

1 γ2 γ−2
3 γ4,

µ(t1)(γ2) = γ−3
1 γ22 γ−3

3 γ4,
µ(t1)(γ3) = γ−1

3 γ4,
µ(t1)(γ4) = γ−3

3 γ24 .
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Then 〈expN
(
SpanZ log

N({γ0, . . . , γ4})
)
〉 is a lattie in N . This an be seen by

a similar omputation as in the proof of the last theorem. Finally, one heks

that the abelianisation of this lattie is isomorphi to Z, hene the orresponding
solvmanifold has b1 = 1.

ad (ii): Let Γ be a lattie in G suh that b1(G/Γ) = 1 and b2(G/Γ) = 2.
The Chevalley-Eilenberg omplex (

∧
g∗, δ) has the losed generator x6 and δ

is given on the non-losed generators by

δx1 = −x23, δx2 = x36, δx3 = −x26, δx4 = −x26 + x56, δx5 = −x36 − x46,

whih implies H1(
∧

g∗, δ) = 〈[x6]〉.
One omputes the di�erential of the non-exat generators of degree two in the

Chevalley-Eilenberg omplex as

δx12 = −x136, δx13 = x126,
δx14 = x126 − x156 − x234, δx15 = x136 + x146 − x235,
δx16 = −x236, δx24 = −x256 − x346,
δx25 = x236 + x246 − x356, δx34 = −x236 + x246 − x356,
δx35 = x256 + x346, δx45 = x256 − x346,

i.e. H2(
∧

g∗, δ) = 〈[x16 + 1
2
x25 − 1

2
x34], [x24 + x35]〉.

This implies that G/Γ and (
∧
g∗, δ) have the same Betti numbers and there-

fore, by Theorem 3.2.11, they share their minimal model.

The minimal model ρ : (
∧
V, d) → (

∧
g∗, δ) must ontain three losed genera-

tors y, z1, z2 whih map to x6, x16+
1
2
x25− 1

2
x34 and x24+x35. ρ(yz2) = x246+x356

is losed and not exat. But ρ(yz1) =
1
2
(x256 − x346) =

1
2
δx45 is exat. Hene the

minimal model's onstrution in the proof of Theorem 1.1.2 implies that there is

another generator u of degree two suh that ρ(u) = 1
2
x45 and du = yz1. Sine

ρ(yu) = 1
2
x456 is losed and non-exat, there are no further generators of degree

less than or equal to two in V . Using the notation of Theorem 1.1.5, we have

u ∈ N2, y ∈ V 1
, (u+ c) y is losed and not exat for eah c ∈ C2

and (
∧
V, d) is

not formal.

Finally, the existene of a sympleti form on G/Γ follows from Proposition

3.8.3.1. �

Theorem 3.8.3.4.

(i) The ompletely solvable Lie group G := G6.78 possesses a lattie.

(ii) For eah lattie the orresponding quotient is a sympleti and formal mani-

fold with b1 = b2 = 1.

Proof. ad (i): By de�nition, we have G = R ⋉µ N with N = G5.3 and

µ(t) = expN ◦ expA(n)(t ad(X6)|n) ◦ logN , where {X1, . . . , X6} denotes a basis of
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g as in the seond row of Table A.20. Note that {X1, . . . , X5} is a basis for the

nilradial n. One omputes

µ(t)∗ := de

(
µ(t)

)
= expA(n)(t ad(X6)|n) =




et 0 0 0 0
0 1 0 0 0
0 0 e−t −te−t 0
0 0 0 e−t 0
0 0 0 0 et



. (3.12)

Using

n = 〈X5〉⋉ad(X5)

(
〈X1〉 ⊕ 〈X2, X3, X4 | [X2, X4] = X3〉

)

with ad(X5)(X2) = −X1, ad(X5)(X4) = −X2, ad(X5)(X1) = ad(X5)(X3) = 0
and

〈X2, X3, X4 | [X2, X4] = X3〉 ∼= g3.1,

we an determine the Lie group N .

As a smooth manifold N equals R5
, and the multipliation is given by

(a, b, c, r, s) · (x, y, z, v, w)

= (a+ x+ bw +
rw2

2
, b+ y + rw , c+ z + bv +

r2w

2
+ rvw , r + v , s+ w).

Now, Theorem 3.3.2 enables us to ompute the exponential map of N as

expN(xX1 + yX2 + zX3 + vX4 + wX5)

=
(
x+

yw

2
+
vw2

6
, y +

vw

2
, z +

yv

2
+
v2w

3
, v , w

)
,

and therefore, we also obtain the logarithm of N

logN
(
(x, y, z, v, w)

)

= (x− yw

2
+
vw2

12
)X1 + (y − vw

2
)X2 + (z − yv

2
− v2w

12
)X3 + vX4 + wX5.

Finally, a short omputation shows that (3.12) implies

µ(t)
(
(x, y, z, v, w)

)
= (etx, y, e−t(z − tw), e−tv, etw).

Let t1 := ln(3+
√
5

2
), b0 := − 2t1

1+
√
5
and onsider for t ∈ R the automorphisms

I(t) : N → N given by

I(t)
(
(x, y, z, v, w)

)

= (0, tb0, 0, 0, 0)(x, y, z, v, w)(0, tb0, 0, 0, 0)
−1 = (x+ tb0w, y, z + tb0v, v, w),
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and ν(t) := µ(t) ◦ I(t) : N → N . It is easy to see that ν : R → A(N) is a

one-parameter group in N .

We shall show that there exists a lattie ΓN in N preserved by ν(t1), and this

then implies the existene of a lattie in G6.78, namely t1Z ⋉ν ΓN .

For the remainder of the proof, we identify n ≡ R5
with respet to the basis

{X1, . . . , X5} of n. Under this identi�ation, onsider the basis {Y1, . . . , Y5} of

n, Yi being the i-th olumn of T = (Tij) ∈ GL(5,R), where T has the following

entries:

T11 =
10(161 + 72

√
5) ln(3+

√
5

2
)2

1165 + 521
√
5

,

T12 = 0,

T13 =
5(2 +

√
5)(161 + 72

√
5) ln(3+

√
5

2
)2

1525 + 682
√
5

,

T14 =
328380 + 146856

√
5− (159975 + 71543

√
5) ln(3+

√
5

2
)2

202950 + 90762
√
5

,

T15 = 1,

T21 = 0,

T22 = −(5 + 3
√
5) ln(3+

√
5

2
)

3 +
√
5

,

T23 = 0,

T24 = −(158114965 + 70711162
√
5) ln(3+

√
5

2
)

141422324 + 63245986
√
5

,

T25 =
5(3940598 + 1762585

√
5) ln(3+

√
5

2
)

17622890 + 7881196
√
5

,

T31 =
1

2
(5 +

√
5) ln(

3 +
√
5

2
),

T32 = 0,

T33 = T22,

T34 = 1,

T35 = −597 + 267
√
5 + (3808 + 1703

√
5) ln(3+

√
5

2
)

369 + 165
√
5

,

T41 = 0,

T42 = 0,

T43 = 0,

T44 = 1,
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T45 = −2(2 +
√
5)

3 +
√
5
,

T51 = 0,

T52 = 0,

T53 = 0,

T54 = ln(
2

3 +
√
5
),

T55 = −2 ln(3+
√
5

2
)

1 +
√
5
.

Let γi := expN(Yi) for i ∈ {1, . . . 5} and

S1 =
92880525355200 + 41537433696024

√
5

57403321562460 + 25671545829588
√
5

− (3591421616495 + 1606132574069
√
5) ln(3+

√
5

2
)2

57403321562460 + 25671545829588
√
5

,

S2 = −(228826127 + 102334155
√
5) ln(3+

√
5

2
)

141422324 + 63245986
√
5

,

S3 = 1− (757189543 + 338625458
√
5) ln(3+

√
5

2
)

848533944 + 379475916
√
5

,

S4 =
724734510 + 324111126

√
5− (325041375 + 145362922

√
5) ln(3+

√
5

2
)2

724734510 + 324111126
√
5

,

S5 =
(120789085 + 54018521

√
5) ln(3+

√
5

2
)

74651760 + 33385282
√
5

,

S6 = − 466724522940 + 208725552012
√
5

24(12018817440 + 5374978561
√
5)

+
(3393446021605 + 1517595196457

√
5) ln(3+

√
5

2
)

24(12018817440 + 5374978561
√
5)

.

One omputes γ1 = (T11, 0, T31, 0, 0), γ2 = (0, T22, 0, 0, 0), γ3 = (T13, 0, T33, 0, 0),
γ4 = (S1, S2, S3, T44, T54) and γ5 = (S4, S5, S6, T45, T55).

Moreover, if A denotes the matrix




1 0 1 13
6

11
6

0 1 0 0 −1
2

1 0 2 −5
6

−1
3

0 0 0 2 1
0 0 0 1 1



, we an alulate

TAT−1 = ν(t1)∗ := de(ν(t)). Sine ν(t1) = expN ◦ν(t1)∗ ◦ logN , this yields

ν(t1)(γ1) = γ1 γ3, ν(t1)(γ2) = γ2, ν(t1)(γ3) = γ1 γ
2
3 , ν(t1)(γ4) = γ21 γ

−2
2 γ24 γ5 and

ν(t1)(γ5) = γ21 γ
−1
2 γ4 γ5.
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Therefore, we have shown that ν(t1) preserves the subgroup ΓN of N whih is

generated by γ1, . . . , γ5. In order to omplete the proof of (i), it su�es to show

that ΓN is a lattie in N .

Sine n is 3-step nilpotent, the Baker-Campbell-Hausdor� formula (see e.g.

[76, Chapter 2.15℄) yields for all V,W ∈ n

logN
(
expN(V ) expN(W )

)
= V +W +

1

2
[V,W ] +

1

12
([[V,W ],W ]− [[V,W ], V ]).

Therefore, we obtain by a short alulation [Y2, Y4] = Y3, [Y2, Y5] = Y1 and

[Y4, Y5] =
1
2
Y1 + Y2 +

1
2
Y3, i.e. the basis {Y1, . . . , Y5} has rational struture on-

stants. Theorem 3.1.1 then implies that ΓN is a lattie in N .

ad (ii): Let Γ be a lattie in G := G6.78. By ompletely solvability and

Theorem 3.2.11 (ii), the minimal model of M = G/Γ is the same as the minimal

modelM of the Chevalley-Eilenberg omplex (
∧

g∗, δ). In view of Theorem 1.1.6,

it su�es to prove that the latter is 2-formal. On the non-losed generators of

(
∧

g∗, δ) the di�erential is given by

δx1 = x16 − x25, δx2 = −x45, δx3 = −x24 − x36 − x46, δx4 = −x46, δx5 = x56,

i.e. H1(
∧

g∗, δ) = 〈[x6]〉. Further, one alulates H2(
∧
g∗, δ) = 〈[x14+x26+x35]〉.

The minimal model ρ : (
∧
V, d) → (

∧
g∗, δ) then must ontain two losed gener-

ators y, z whih map to x6 and x14+x26+x35. Sine ρ(yz) = x146+x356 is losed
and non-exat, there are no other generators of degree two in (

∧
V, d), hene

up to degree two, all generators are losed. This implies the minimal model's

2-formality.

Moreover, x14 + x26 + x35 de�nes a sympleti form. �

Remark. In order to determine a lattie in G6.78, the author also found a lattie

of the ompletely solvable Lie group G−1
6.76. One an show that the orresponding

solvmanifold is formal and has �rst Betti number equal to one. Unfortunately, it

is not sympleti by Proposition 3.8.3.1.

Remark. Besides the mentioned groups above, the following non-ompletely

solvable Lie groups G6.i ould give rise to a sympleti solvmanifold G6.i/Γ with

b1(G6.i/Γ) = 1:

i = 8; i = 9, b 6= 0; i = 10, a 6= 0;
i = 11; i = 12; i = 32, a = ε = 0 < h;
i = 37, a = 0; i = 88, µ0ν0 6= 0; i = 89, ν0s 6= 0;
i = 90, ν0 6= 0; i = 92, µ0ν0 6= 0; i = 92∗;
i = 93, |ν0| > 1

2
.

(3.13)

But then the ohomology lass of the sympleti form annot lie in the image of

the inlusion H∗(
∧
g∗6.i, δ) →֒ H∗(G6.i/Γ, d) by Proposition 3.8.3.1.
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3.8.4 Sympleti solvmanifolds whose �rst Betti number is

greater than one

In this setion, we examine whih Lie groups G an give rise to a six-dimensional

solvmanifold G/Γ with b1(G/Γ) > 1. Again, we just onsider indeomposable

onneted and simply-onneted solvable Lie groups. The nilradial of suh a

group has not dimension equal to three, see e.g. [58℄. Proposition 3.2.5 then

tells us that indeomposable solvable Lie groups have nilradials of dimension

greater than three. Moreover, the nilpotent ones were onsidered in Setion

3.8.1, hene we an assume that G is non-nilpotent, i.e. dimNil(G) ∈ {4, 5}. The
orresponding Lie algebras are listed in Tables A.10 � A.26.

In Setion 3.8.2, we have exluded some groups G sine they annot admit

latties. Clearly, we omit them in the onsiderations below.

By Theorem 3.2.11(ii), we have in the ompletely solvable ase an isomor-

phism from Lie algebra ohomology to the solvmanifold's ohomology, i.e. the

Lie algebra g must satisfy b1(g) > 1, too. In the last setion, we saw that g06.38
is the only non-ompletely solvable but ohomologially sympleti Lie algebra

with b1(g) = 1. Therefore, for eah lattie Γ in G0
6.38 with b1(G

0
6.38/Γ) > 1, the

quotient is sympleti. We now turn to Lie algebras with b1(g) > 1. The possible
values of b1 an be read of in Tables A.27 � A.29.

The remaining algebras to examine are g6.i with

i = 2, a = 0; i = 3, d = −1; i = 6, a = −1
2
, b = 0;

i = 9, b = 0; i = 10, a = 0; i = 21, a = 0;
i = 23, a = 0; i = 25, b = 0; i = 26;
i = 29, b = 0; i = 33, a = 0; i = 34, a = 0;
i = 36, a = 0; i = 54, l = −1; i = 63;
i = 65, l = 0; i = 70, p = 0; i = 83, l = 0;
i = 84; i = 88, µ0 = ν0 = 0; i = 89, ν0s = 0;
i = 90, ν0 = 0; i = 92, ν0µ0 = 0; i = 93, ν0 = 0;
i = 102; i = 105; i = 107;
i = 113; i = 114; i = 115;
i = 116; i = 118; i = 120;
i = 125; i = 129; i = 135.

(3.14)

As above, we just onsider suh Lie algebras that are ohomologially sympleti,

although this ondition is only in the ompletely solvable ase neessary for the

existene of a sympleti form on G/Γ.

Proposition 3.8.4.1. Let g6.i be one of the Lie algebras listed in (3.14).

Then g6.i is ohomologially sympleti if and only if it is ontained in the
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following list:

b1 = 2 : i = 3, d = −1; i = 10, a = 0; i = 21, a = 0;
i = 36, a = 0; i = 54, l = −1;
i = 70, p = 0; i = 118, b = ±1.

b1 = 3 : i = 23, a = 0, ε 6= 0; i = 29, b = 0.

Proof. This is done by a ase by ase analysis as desribed in the proof of

Proposition 3.8.3.1. We list the sympleti forms for the Lie algebras that are

ohomologially sympleti. In the ases with b1 = 2, the sympleti forms are

given by

i = 3, d = −1 : ω = λ x16 + µ x23 + ν x45, λµν 6= 0,
i = 10, a = 0 : ω = λ x16 + µ x23 + ν x45, λµν 6= 0,
i = 21, a = 0 : ω = λ x12 + µ x36 + ν x45, λµν 6= 0,
i = 36, a = 0 : ω = λ x12 + µ x36 + ν x45, λµν 6= 0,
i = 54, l = −1 : ω = λ (x12 + x23) + µ x34 + ν x56, λν 6= 0,
i = 70, p = 0 : ω = λ (x13 + x24) + µ x34 + ν x56, λν 6= 0,
i = 118, b = ±1: ω = λ (x13 ± x24) + µ (x14 − x23) + ν x56, (λ2 + µ2)ν 6= 0.

In the ases with b1 = 3, we have the sympleti forms

ω = λ (x12 + ε x35) + µ (x16 + x24) + ν (x23 − ε x56) + ρ x25 + σ x46

with λµν 6= 0 for i = 23, a = 0, ε 6= 0,

ω = λ (x13 + ε x45) + µ (x16 + x24) + ν (x23 − ε x56) + ρ x26 + σ x34

with λ 6= 0, ρ 6= (λ+ε)µν
λ

for i = 29, b = 0, ε 6= 0 and

ω = λ x12 + µ x13 + ν (x16 + x24) + ρ x26 + σ x34 + τ x56

with ν(νσ + µτ) 6= 0 for i = 29, b = 0, ε 6= 0. �

Provided there is a lattie in one of the ten Lie groups G6.i in the last propo-

sition whose Lie algebras are ohomologially sympleti, we an ensure that the

orresponding solvmanifold is sympleti. In the ompletely solvable ase, i.e.

i ∈ {3, 21, 23, 29, 54}, we an determine ohomologial properties of the potential

solvmanifolds.

Proposition 3.8.4.2.

(i) There is a lattie in the ompletely solvable Lie group G0,−1
6.3 .

(ii) For eah lattie the orresponding solvmanifold is sympleti, not formal

and satis�es b1 = 2 as well as b2 = 3.
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Proof. ad (i) : By de�nition, we have G := G0,−1
6.3 = R⋉µN with N = R5

and

µ(t) = expGL(5,R)(t ad(X6)|n), where X6 ∈ g
0,−1
6.3 is hosen as in Table A.11, i.e.

µ(t) =




1 −t t2

2
0 0

0 1 −t 0 0
0 0 1 0 0
0 0 0 e−t 0
0 0 0 0 et



.

Set t1 := ln(3+
√
5

2
). Then µ(t1) is onjugate to




1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 1 3



. This follows

from (3.4) and the fat that the Jordan form of the upper left blok of µ(t1) is


1 1 0
0 1 1
0 0 1



. Hene G admits a lattie.

ad (ii): By ompletely solvability and Theorem 3.2.11 (ii), the solvmanifold's

minimal model is the same as the minimal model of the Chevalley-Eilenberg

omplex (
∧
(x1, . . . , x6), δ). In view of Theorem 1.1.6, it su�es to prove that the

latter is not 2-formal.

Using the knowledge of the Chevalley-Eilenberg omplex, one an ompute

ρ : (
∧
(y1, . . . , y4, z), d) → (

∧
(x1, . . . , x6), δ) as the minimal model up to genera-

tors of degree two, where

ρ(y1) = x3, ρ(y2) = x6, ρ(y3) = −x2, ρ(y4) = −x1, ρ(z) = x4x5,

dy1 = dy2 = 0, dy3 = y1y2, dy4 = y2y3, dz = 0.

This obviously implies the statement about the Betti numbers. Moreover, using

the notation of Theorem 1.1.5, we have C1 = 〈y1, y2〉, N1 = 〈y3, y4〉, and y1 (y3+c)
is losed but not exat for eah c ∈ C1

. Hene the minimal model is not 1-
formal. �

Proposition 3.8.4.3.

(i) There is a lattie in the ompletely solvable Lie group G0
6.21.

(ii) For eah lattie the orresponding solvmanifold is sympleti, not formal

and satis�es b1 = 2 as well as b2 = 3.

Proof. The proof of (ii) is ompletely analogous to that of (ii) in the last

proposition. But this time, the minimal model is given by

ρ(y1) = x2, ρ(y2) = x6, ρ(y3) = −x3, ρ(y4) = x1, ρ(z) = x4x5,

dy1 = dy2 = 0, dy3 = y1y2, dy4 = y1y3, dz = 0,

and y1 (y4 + c) is losed but non-exat for eah losed c of degree one.
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ad (i): In order to prove the existene of a lattie, we use the same argumen-

tation as in the proof of Theorem 3.8.3.2 (i). (Note that G−1
6.15 and G := G0

6.21

share their nilradial N .) But of ourse, we now have a di�erent initial data:

G = R⋉µ N with µ(t) = expN ◦ expA(n)(t




0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0
0 0 0 −1 0
0 0 0 0 1



) ◦ logN and

µ(t)
(
(y, z, v, w)

)
= expGL(4,R)(t




0 0 0 0
−t 0 0 0
0 0 −t 0
0 0 0 t


)




y
z
v
w




=




1 0 0 0
−t 1 0 0
0 0 e−t 0
0 0 0 et







y
z
v
w


 .

Arguing analogous as in (3.10), one obtains

µ(t)
(
(x, y, z, v, w)

)
=
(
x− t

2
y2, µ(t)

(
(y, z, v, w)

))
.

Let t1 = ln(3+
√
5

2
), A :=




1 1 0 0
0 1 0 0
0 0 0 −1
0 0 1 3


 and T =




0 − 1
t1

0 0

1 0 0 0

0 0 18+8
√
5

7+3
√
5

1

0 0 2
3+

√
5

1


.

Then we have TAT−1 = µ(t1). Denote the i-th olumn of T by bi. Analogous al-
ulations as in lo. it. imply the existene of a lattie generated by γ0 := ( 1

t1
, 0R4)

and γi := (bi0, bi), i ∈ {1, . . . , 4}, where b20 ∈ R arbitrary and b10 = − 1
2t1

as well

as b30 = b40 = 0. �

Proposition 3.8.4.4.

(i) Let ε = ±1. There is a lattie in the ompletely solvable Lie group G0,0,ε
6.23 .

(ii) If there is a lattie in G0,0,ε
6.23 , ε 6= 0, then the orresponding solvmanifold is

sympleti, non-formal and satis�es b1 = 3 as well as b2 = 5.

Proof. ad (i): G0,0,ε
6.23 has the same nilradial N as G−1

6.15 and the latter is

desribed at the beginning of the proof of Theorem 3.8.3.2.

By de�nition, G0,0,ε
6.23 = R⋉µ N with

µ(t) = expN ◦ expA(n)(t




0 0 0 0 −ε
0 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 0



) ◦ logN .
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The funtions expN , logN also an be found in the proof of Theorem 3.8.3.2. Using

their knowledge, we alulate

µ(t)
(
(x, y, z, v, w)

)
=
(
x− t

2
y2 − tε , y , z − ty ,

t2

2
y − tz + v , w

)
.

If ε = ±1, then the map µ(2) preserves the lattie

{(x, y, z, v, w) ∈ N | x, y, z, v, w ∈ Z} ⊂ N.

Therefore, G0,0,ε
6.23 admits a lattie.

ad (ii): By ompletely solvability, the Betti numbers of the Chevalley-Eilen-

berg omplex oinide with the solvmanifold's Betti numbers. A short alulation

yields the �rst Betti numbers of the former as b1 = 3 and b2 = 5.
The knowledge of the Chevalley-Eilenberg omplex (

∧
(x1, . . . , x6), δ) enables

us to ompute the �rst stage of the minimal model as above. It is given by

ρ : (
∧
(y1, . . . , y6), d) → (

∧
(x1, . . . , x6), δ) with

ρ(y1) = x2, ρ(y2) = x5, ρ(y3) = x6, ρ(y4) = −x3, ρ(x5) = x1, ρ(y6) = −x4,
dy1 = dy2 = dy3 = 0, dy4 = y1y3, dy5 = y1y4 − ε y2y3, dy6 = y3y4.

Sine y3 (y6 + c) is losed and non-exat for eah losed c of degree one, the

minimal model is not 1-formal. �

Proposition 3.8.4.5.

(i) Let ε ∈ {0,±1}. There is a lattie in the ompletely solvable Lie group

G0,0,ε
6.29 .

(ii) If there is a lattie in G0,0,ε
6.29 , ε ∈ R, then the orresponding solvmanifold is

sympleti, non-formal and has b1 = 3 as well as b2 =

{
5, if ε 6= 0
6, if ε = 0

}
.

Proof. The argumentation is analogous to the last proof, but this time we

have

µ(t)
(
(x, y, z, v, w)

)
=
(
x− ε

6
t3z +

ε

2
t2v − εtw , y , z , −tz + v ,

1

2
t2z − tv + w

)
.

(Note that there is no misprint. The maps expN ◦ expA(n)(t ad(X6)) ◦ logN and

expA(n)(t ad(X6)) have the same form.) For ε ∈ {0,±1}, µ(6) preserves the integer
lattie mentioned in the last proof. This implies (i).

In order to prove (ii), we onsider the minimal model. Up to generators of

degree one, it is given by

ρ(y1) = x2, ρ(y2) = x3, ρ(y3) = x6, ρ(y4) = −x4, ρ(x5) = −x5, ρ(y6) = −x1,
dy1 = dy2 = dy3 = 0, dy4 = y2y3, dy5 = y3y4, dy6 = y1y2 + ε y3y5,
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if ε 6= 0, and

ρ(y1) = x2, ρ(y2) = x3, ρ(y3) = x6, ρ(y4) = −x1, ρ(x5) = −x4, ρ(y6) = −x5,
dy1 = dy2 = dy3 = 0, dy4 = y1y2, dy5 = y2y3, dy6 = y3y5,

if ε = 0. In both ases y2 (y4+ c) is losed and non-exat for all losed c of degree
one. �

The following result is due to Fernández, de Léon and Saralegui. Its proof an

be found in [26, Setion 3℄. Note that the ohomologial results are independent

of the hoie of the lattie, sine the Lie group in the proposition is ompletely

solvable.

Proposition 3.8.4.6. The ompletely solvable Lie group G0,−1
6.54 admits a lattie.

For eah suh, the orresponding solvmanifold is sympleti, non-formal and sat-

is�es b1 = 2 as well as b2 = 5. �

Summing up the results onerning ompletely solvable Lie groups that admit

sympleti quotients, we obtain:

Theorem 3.8.4.7. All six-dimensional sympleti solvmanifolds that an be writ-

ten as quotient of a non-nilpotent ompletely solvable indeomposable Lie group

are ontained in one of the last �ve propositions, Theorem 3.8.3.2 or Theorem

3.8.3.4. �

To end this setion, we onsider the four ohomologially sympleti Lie al-

gebras g6.i of Proposition 3.8.4.1 that are not ompletely solvable, this means

i = 10 ∧ a = 0, i = 36 ∧ a = 0, i = 70 ∧ p = 0 or i = 118 ∧ b = ±1. Clearly, the
existene of a lattie implies that the orresponding solvmanifold is sympleti.

But in order to make a statement about ohomologial properties, one needs an

assumption about the �rst two Betti numbers to ensure the knowledge of the

ohomology algebra.

Proposition 3.8.4.8.

(i) Eah quotient of the Lie group G := G0,0
6.10 by a lattie is sympleti and G

admits a lattie Γ with b1(G/Γ) = 2.

(ii) If there is a lattie in G suh that the orresponding solvmanifold satis�es

b1 = 2 and b2 = 3, then it is sympleti and not formal.

Proof. We have G = R⋉µ N with N = R5
, µ(t) = expGL(5,R)(t ad(X6)|n) and

X6 ∈ g
0,0
6.10 hosen as in Table A.11, i.e.

µ(t) =




1 −t t2

2
0 0

0 1 −t 0 0
0 0 1 0 0
0 0 0 cos(t) − sin(t)
0 0 0 sin(t) cos(t)



.
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µ(π) is onjugate to




1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 −1



. This follows from the fat that the

Jordan form of the upper left blok of µ(π) is




1 1 0
0 1 1
0 0 1



. Hene G admits a

lattie Γ.
A short alulation yields that the abelianisation of this lattie is isomorphi

to Z2 ⊕ Z2
2
, i.e. b1(G/Γ) = 2.

Using the assumptions of (ii), one alulates the minimal model up to gener-

ators of degree one as

ρ(y1) = x3, ρ(y2) = x6, ρ(y3) = −x2, ρ(y4) = −x1,
dy1 = dy2 = 0, dy3 = y1y2, dy4 = y2y3,

and y1 (y3 + c) is losed but not exat for eah losed c of degree one. �

Proposition 3.8.4.9.

(i) Eah quotient of the Lie group G := G0,0
6.36 by a lattie is sympleti and G

admits a lattie Γ with b1(G/Γ) = 2.

(ii) If there is a lattie in the Lie group G suh that the orresponding solvmani-

fold satis�es b1 = 2 and b2 = 3, then it is sympleti and not formal.

Proof. The proof of (ii) is analogous to the last one. Up to generators of

degree one, the minimal model is given by

ρ(y1) = x2, ρ(y2) = x6, ρ(y3) = −x3, ρ(y4) = x1,

dy1 = dy2 = 0, dy3 = y1y2, dy4 = y1y3,

and y1 (y4 + c) is losed but not exat for eah losed c of degree one.
ad (i): Using another initial data, we argue as in the proof of Proposition

3.8.4.3. We now have µ(t)
(
(x, y, z, v, w)

)
=
(
x− t

2
y2, µ(t)

(
(y, z, v, w)

))
with

µ(t)
(
(y, z, v, w)

)
= expGL(4,R)(t




0 0 0 0
−t 0 0 0
0 0 0 t
0 0 −t 0


)




y
z
v
w




=




1 0 0 0
−t 1 0 0
0 0 cos(t) sin(t)
0 0 − sin(t) cos(t)







y
z
v
w


 .
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Let t1 = π, A :=




1 1 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 and T :=




0 − 1
t1

0 0

1 0 0 0
0 0 1 0
0 0 0 1


. Then we

have TAT−1 = µ(t1). Denote the i-th olumn of T by bi. Analogous alulations
as in lo. it. lead to a lattie generated by γ0 := ( 1

t1
, 0R4) and γi := (bi0, bi) for

i ∈ {1, . . . , 4}, where b20 ∈ R arbitrary and b10 = − 1
2t1
, b30 = b40 = 0.

Obviously, this lattie is represented by

〈τ, γ0, . . . , γ4 | [τ, γ1] = 1, [τ, γ2] = γ1, [τ, γ3] = γ−2
3 , [τ, γ4] = γ−2

4 , [γ1, γ2] = γ0〉

and its abelianisation is Z2⊕Z2
2
, i.e. the solvmanifold's �rst Betti number equals

two. �

Proposition 3.8.4.10.

(i) Eah quotient of the Lie group G := G0,0
6.70 by a lattie is sympleti and G

admits a lattie Γ with b1(G/Γ) = 2.

(ii) If there is a lattie Γ in G suh that b1(G/Γ) = 2 and b2(G/Γ) = 3, then
G/Γ is formal.

Proof. ad (i): By de�nition, we have G = R ⋉µ N with N = G5.1 and

µ(t) = expN ◦ expA(n)(t ad(X6)|n) ◦ logN , where {X1, . . . , X6} denotes a basis of

g as in the seond row of Table A.18. Note that {X1, . . . , X5} is a basis of the

nilradial n. One omputes

µ(t)∗ := de(µ(t)) = expA(n)(t ad(X6))

=




cos(t) sin(t) 0 0 0
− sin(t) cos(t) 0 0 0

0 0 cos(t) sin(t) 0
0 0 − sin(t) cos(t) 0
0 0 0 0 1



.

Using n = 〈X5〉 ⋉ad(X5) 〈X1, . . . , X4 | 〉 and ad(X5)(X1) = ad(X5)(X2) = 0,
ad(X5)(X3) = −X1, ad(X5)(X4) = −X2, we an determine the Lie group N .

As a smooth manifold N equals R5
, and the multipliation is given by

(a, b, c, r, s) · (x, y, z, v, w) =
(
a + x+ cw , b+ y + rw , c + z , r + v , s+ w

)
.

By Theorem 3.3.2, we an obtain the exponential map of N as

expN(xX1 + yX2 + zX3 + vX4 + wX5) = (x+
zw

2
, y +

vw

2
, z , v , w),

and obviously, this implies

logN
(
(x, y, z, v, w)

)
= (x− wz

2
)X1 + (y − vw

2
)X2 + zX3 + vX4 + wX5.
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From µ(t) = expN ◦µ(t)∗ ◦ logN we get

µ(t)
(
(x, y, z, v, w)

)
= (cos(t) x+ sin(t) y , − sin(t) x+ cos(t) y ,

cos(t) z + sin(t) v , − sin(t) z + cos(t) v , w)

and µ(π) preserves the lattie {(x, y, z, v, w) ∈ N | x, y, z, v, w ∈ Z}.
The orresponding solvmanifold has b1 = 2 sine the abelianisation of this

lattie is isomorphi to Z2 ⊕ Z2
4
.

ad (ii): Up to generators of degree two, the minimal model is given by

ρ(y1) = x5, ρ(y2) = x6, ρ(z1) = x13 + x24, ρ(z2) = x34,

dy1 = dy2 = 0, dz1 = dz2 = 0,

hene it is 2-formal. By Theorem 1.1.6, the solvmanifold is formal. �

Proposition 3.8.4.11.

(i) G := G0,±1,−1
6.118 admits a lattie suh that the �rst Betti number of the orre-

sponding solvmanifold equals two (and the seond Betti number equals �ve).

(ii) If there is a lattie Γ in G suh that b1(G/Γ) = 2 and b2(G/Γ) = 3, then
G/Γ is sympleti and formal.

Proof. The onstrution of the latties mentioned in (i) an be found in [79℄.

In lo. it. G0,1,−1
6.118 is denoted by G3 and G

0,−1,−1
6.118 by G1, respetively. The Betti

numbers of the quotient of G0,−1,−1
118 are determined expliitly. In the ase of

G0,1,−1
118 , one an make an analogous omputation.

Assume there is a lattie that satis�es the ondition of (ii). Up to generators

of degree two, the solvmanifold's minimal model is given by

ρ(y1) = x5, ρ(y2) = x6, ρ(z1) = x13 ± x24, ρ(z2) = x14 ∓ x23,

dy1 = dy2 = 0, dz1 = dz2 = 0,

hene it is 2-formal. Theorem 1.1.6 then implies formality. �

Remark. G0,−1,−1
6.118 is the underlying real Lie group of the unique onneted and

simply-onneted omplex three-dimensional Lie group that is solvable and not

nilpotent. Its ompat quotients by latties are lassi�ed in [59, Theorem 1℄.

They always satisfy b1 = 2 and moreover, for the Hodge number h0,1 holds either
h0,1 = 1 or h0,1 = 3.

Remark. Besides the groups mentioned in this setion, the following solvable

but not ompletely solvable Lie groups G6.i ould give rise to a sympleti solv-

manifold with b1 > 1. But then the ohomology lass of the sympleti form

annot lie in the image of the inlusion H∗(
∧

g∗6.i, δ) →֒ H∗(G6.i/Γ, d).
There are the sixteen lasses of groups in (3.13) and

i = 9, b = 0; i = 33, a = 0; i = 34, a = 0;
i = 35, a = −b; i = 89, s = 0, ν0 6= 0; i = 92, ν0µ0 = 0;
i ∈ {107, 113, . . . , 116, 125, 135}.
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3.8.5 Deomposable solvmanifolds

The six-dimensional deomposable solvmanifolds G/Γ = H1/Γ1 × H2/Γ2 being

not a nilmanifold are ontained in Table 3.5 on page 89. Using Theorem 3.2.11,

one an dedue the statement about the Betti numbers. The results on the

existene of a sympleti form were mostly made by Campoamor-Stursberg in

[10℄. He examined whether the Lie algebra admits a sympleti form. Note that

in [10℄ the sympleti forms

λ x12 + µ x15 + ν x26 + ρ x34 + σ x56, ρ 6= 0, λσ 6= µν,

on g05.14 ⊕ g1 are absent.

Sine there is a monomorphism from the Lie algebra ohomology to the solv-

manifold's ohomology, the existene of a sympleti form with non-exat ubi

on the Lie algebra implies the existene of suh an on the solvmanifold. Reall

that the Lie algebra is generated by the left-invariant one-forms on the Lie group.

If the Lie algebra ohomology is isomorphi to the solvmanifold's ohomology

12

,

one knows whether the solvmanifold is sympleti or not. Up to exat summands

the sympleti forms are listed in Table 3.6 with respet to the dual of the Lie

algebra's bases given in Appendix A. In the olumn �isom.�, we mark whether

there is an isomorphism of the ohomology algebras.

We do not laim that Table 3.5 ontains all onneted and simply-onneted

deomposable solvable and non-nilpotent Lie groups whih admit a lattie � just

those Lie groups admitting a lattie suh that the orresponding solvmanifold is

a produt of lower-dimensional ones.

3.9 Relations with the Lefshetz property

We have seen in Chapter 2 that a ompat Kähler manifold is formal, Hard

Lefshetz and its odd-degree Betti numbers are even. Even if a manifold has

a omplex struture, these onditions are not su�ient as the following theorem

whih is mentioned in [41℄ shows. Reall, we have seen above that G1,−1,−1
5.7 admits

a lattie.

Theorem 3.9.1. Let Γ be an arbitrary lattie in G1,−1,−1
5.7 . Then the solvmanifold

M := G1,−1,−1
5.7 /Γ × S1

is formal, Hard Lefshetz and has even odd-degree Betti

numbers. Moreover, M possesses a omplex struture but it annot be Kählerian.

Proof. From Proposition 3.7.2.1 follows that the Lie group G := G1,−1,−1
5.7 ×R

possesses a lattie Γ. The Chevalley-Eilenberg omplex of its Lie algebra

〈X1, . . . , X6 | [X1, X5] = X1, [X2, X5] = X2, [X3, X5] = −X3, [X4, X5] = −X4 〉
12

E.g. this happens if the Lie algebra is ompletely solvable or if the above monomorphism

must be an isomorphism by dimension reasons.



3.9. RELATIONS WITH THE LEFSCHETZ PROPERTY 89

Table 3.5: Deomposable non-nil-solvmanifolds G/Γ = H1/Γ1 ×H2/Γ2

G b1(G/Γ) b2(G/Γ) formal sympl. Comment

Gp,q,r
5.7 × R 2 1 yes no −1 < r < q < p < 1,

pqr 6= 0,
p+ q + r = −1

Gp,−p,−1
5.7 × R 2 3 yes yes p ∈]0, 1[

G1,−1,−1
5.7 × R 2 5 yes yes

G−1
5.8 × R 3 5 no yes

G−1−2q,q,r
5.13 × R ≥ 2 ≥ 1 ? ? q ∈ [−1, 0[,

q 6= −1
2
, r 6= 0

G−1,0,r
5.13 × R ≥ 2 ≥ 3 ? yes r 6= 0
G0

5.14 × R ≥ 3 ≥ 5 ? yes

G−1
5.15 × R 2 3 no yes

Gp,−p,r
5.17 × R ≥ 2 ≥ 1 ? ? p 6= 0, r 6∈ {0,±1},

Gp,−p,r
5.17 × R ≥ 2 ≥ 3 ? yes (p 6= 0, r = ±1)

or (p = 0, r 6∈ {0,±1})
G0,0,±1

5.17 × R ≥ 2 ≥ 5 ? yes

G0
5.18 × R ≥ 2 ≥ 3 ? yes

G−1
5.20 × R 3 3 yes no

G0,±1
5.26 × R ≥ 3 ≥ 3 ? ?

G−1,−1
5.33 × R 3 3 yes no

G−2,0
5.35 × R ≥ 3 ≥ 3 ? ?

Gp,−p−1
4.5 × R2 3 3 yes no p ∈ [−1

2
, 0[

G−2p,p
4.6 × R2 3 3 yes no p > 0
G−1

4.8 × R2 3 3 yes no

G0
4.9 × R2 3 3 yes no

G−1
3.4 × R3 4 7 yes yes

G0
3.5 × R3 4 7 yes yes

G3.1 ×G−1
3.4 3 5 no yes

G3.1 ×G0
3.5 3 5 no yes

G−1
3.4 ×G−1

3.4 2 3 yes yes

G−1
3.4 ×G0

3.5 2 3 yes yes

G0
3.5 ×G0

3.5 2 3 yes yes
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Table 3.6: Sympleti forms on G/Γ = H1/Γ1 ×H2/Γ2

g sympleti forms isom.

g
p,−p,−1
5.7 ⊕ g1 a x14 + b x23 + c x56, abc 6= 0 yes

g
1,−1,−1
5.7 ⊕ g1 a x13 + b x14 + c x23 + d x24 + e x56, e(bc− ad) 6= 0 yes

g−1
5.8 ⊕ g1 a x12 + b x15 + c x26 + d x34 + e x56, d(ae− bc) 6= 0 yes

g
−1,0,r
5.13 ⊕ g1 a x12 + b x34 + c x56, abc 6= 0 ?

g05.14 ⊕ g1 a x12 + b x15 + c x26 + d x34 + e x56, d(ae− bc) 6= 0 ?

g−1
5.15 ⊕ g1 a (x14 − x23) + b x24 + c x56, abc 6= 0 yes

g
p,−p,±1
5.17 ⊕ g1 a (x13 ± x24) + b (x14 ∓ x23) + c x56, abc 6= 0 ?

p 6= 0

g
0,0,r
5.17 ⊕ g1 a x12 + b x34 + c x56, abc 6= 0 ?

r 6= ±1

g
0,0,±1
5.17 ⊕ g1 a x12 + b (x13 ± x24) + c (x14 ∓ x23) + d x34 + e x56, ?

e(ad ∓ (b2 + c2)) 6= 0
g05.18 ⊕ g1 a (x13 + x24) + b x24 + c x56, ac 6= 0 ?

g−1
3.4 ⊕ 3g1 a x12 + b x34 + c x35 + d x36 + e x45 + f x46 + g x56, yes

a(de− cf + bg) 6= 0
g03.5 ⊕ 3g1 a x12 + b x34 + c x35 + d x36 + e x45 + f x46 + g x56, yes

a(de− cf + bg) 6= 0
g3.1 ⊕ g−1

3.4 a x12 + b x13 + c x26 + d x36 + e x45, e(ad− bc) 6= 0 yes

g3.1 ⊕ g03.5 a x12 + b x13 + c x26 + d x36 + e x45, e(ad− bc) 6= 0 yes

g−1
3.4 ⊕ g−1

3.4 a x12 + b x36 + c x45, abc 6= 0 yes

g−1
3.4 ⊕ g03.5 a x12 + b x36 + c x45, abc 6= 0 yes

g03.5 ⊕ g03.5 a x12 + b x36 + c x45, abc 6= 0 yes
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is given by

δx1 = −x15, δx2 = −x25, δx3 = x35, δx4 = x45, δx5 = δx6 = 0,

where {x1, . . . , x6} is a basis of the left-invariant one-forms on G. Sine G is

ompletely solvable, Theorem 3.2.11 (ii) enables us to ompute the ohomology

of M as

H1(M,R) ∼= 〈[x5], [x6]〉,
H2(M,R) ∼= 〈[x13], [x14], [x23], [x24], [x56]〉,
H3(M,R) ∼= 〈[x135], [x136], [x145], [x146], [x235], [x236], [x245], [x246]〉, (3.15)
H4(M,R) ∼= 〈[x1234], [x1356], [x1456], [x2356], [x2456]〉,
H5(M,R) ∼= 〈[x12345], [x12346]〉.

Let [ω] ∈ H2(M,R) represent a sympleti form onM . A short alulation shows

that there are a, b, c, d, e ∈ R with e(bc− ad) 6= 0 and

[ω] = a[x13] + b[x14] + c[x23] + d[x24] + e[x56].

Sine [x5] ∪ [ω]2 = 2(bc − de)[x12345] 6= 0 and [x6] ∪ [ω]2 = 2(bc− de)[x12346] 6= 0,
the homomorphism L2 : H1(M,R) → H5(M,R) is an isomorphism.

In the basis (3.15), the homomorphism L1 : H2(M,R) → H4(M,R) is rep-

resented by the matrix




−d c −b −a 0
e 0 0 0 a
0 e 0 0 b
0 0 e 0 c
0 0 0 e d




whih has 2e3(ad − bc) 6= 0 as

determinant, hene M is Hard Lefshetz.

We de�ne an almost omplex struture J on G by

JX1 = X2, JX2 = −X1, JX3 = X4, JX4 = −X3, JX5 = X6, JX6 = −X5,

whih indues an almost omplex struture on M . It is easy to see that the

Nijenhuis tensor vanishes, hene M is a omplex manifold.

M is a non-toral solvmanifold whih is a quotient of a ompletely solvable Lie

group. Therefore, M annot be Kählerian by Theorem 3.2.13. �

The authors of [47℄ onsidered the relations between the above three properties

for losed sympleti manifolds. We want to try to omplete [47, Theorem 3.1

Table 1℄ in the ase of sympleti solvmanifolds. Atually, the mentioned table

deals with sympletially aspherial losed manifolds, but note that sympleti

solvmanifolds are sympletially aspherial.

We start our investigations by the examination of the Lefshetz property in

dimension four.
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Theorem 3.9.2. A four-dimensional sympleti solvmanifold is not (Hard) Lef-

shetz if and only if it is a non-toral nilmanifold. Espeially, the (Hard) Lefshetz

property is independent of the hoie of the sympleti form.

Proof. By Theorem 3.6.2, there are �ve lasses of four-dimensional sympleti

solvmanifolds. Three of them are nilmanifolds and satisfy the laim by Corollary

3.1.10.

There remain two non-nilmanifolds to onsider. We start with a quotient

M of the Lie group whih has g−1
3.1 ⊕ g1 as Lie algebra, see Table A.1. The Lie

group is ompletely solvable, hene the Lie algebra ohomology is isomorphi to

the solvmanifold's ohomology. If x1, . . . , x4 denote the left-invariant one-forms

whih are dual to the basis given in Table A.1, one omputes

H1(M,R) ∼= 〈[x3], [x4]〉,
H2(M,R) ∼= 〈[x12], [x34]〉, (3.16)

H3(M,R) ∼= 〈[x123], [x124]〉.

The lass representing a sympleti form must be of the form [a x12 + b x34] with
a, b 6= 0 and obviously, the Lefshetz map with respet to this lass is an isomor-

phism.

Now, onsider a solvmanifold G/Γ suh that the Lie algebra of G is g03.5 ⊕ g1
and b1(G/Γ) = 2. A short omputation yields that the Lie algebra ohomology

of g3.5 ⊕ g1 is the same as in (3.16). Sine G/Γ is ompat and parallelisable,

we see further bi(G/Γ) = 2 for i ∈ {1, 2, 3}, and Theorem 3.2.11 (i) implies that

(3.16) also gives the ohomology of G/Γ. We have yet seen that a sympleti

four-manifold with this ohomology is Hard Lefshetz. �

Denote KT �the� four-dimensional sympleti nilmanifold with b1(KT ) = 3.
We have seen that KT is not formal and not Lefshetz. Its square has the

following properties:

Theorem 3.9.3 ([47℄). KT × KT is not formal, not Lefshetz and has even

odd-degree Betti numbers. �

Next, we are looking for an example of a formal manifold that is not Lefshetz

and has even odd degree Betti numbers resp. an odd odd degree Betti number.

Theorem 3.9.4. The Lie group G6.78 admits a lattie Γ, see above. M := G6.78/Γ
is a formal solvmanifold with b1(M) = 1 that admits a sympleti form ω suh that

(M,ω) is not Hard Lefshetz. Moreover, (M ×M,ω × ω) is a formal sympleti

manifold with even odd degree Betti numbers that is not Hard Lefshetz.

Proof. By Theorem 3.8.3.4, M is a formal sympleti manifold with Betti

numbers b1(M) = b2(M) = 1. Note that this implies that M ×M is sympleti

and formal (the latter property by Proposition 1.1.7).
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Corollary 2.1.4 fores M to be not Lefshetz and sine [27, Proposition 4.2℄

says that a produt is Lefshetz if and only if both fators are Lefshetz, M ×M
is not Lefshetz.

M is a six-dimensional solvmanifold and so it is parallelisable. Hene the fat

b0(M) = b1(M) = b2(M) = 1 implies b3(M) = 2. This and Poinaré Duality

imply b1(M × M) = b11(M × M) = 2, b3(M × M) = b9(M × M) = 6 and

b5(M ×M) = b7(M ×M) = 4. �

In 1990, Benson and Gordon [4, Example 3℄ onstruted an eight-dimensional

non-exat sympleti and ompletely solvable Lie algebra that does not satisfy

the Hard Lefshetz property, but they did not know whether the orresponding

onneted and simply-onneted Lie group GBG
admits a lattie.

Fernández, de León and Saralegui omputed in [26, Proposition 3.2℄ the min-

imal model of the omplex of the left-invariant di�erential forms on GBG
. It is

formal and its ohomology of odd degree is even-dimensional. If GBG
admits

a lattie, by ompletely solvability, the orresponding solvmanifold would be a

sympleti and formal manifold with even odd degree Betti numbers that violates

the Hard Lefshetz property.

In 2000, Tralle [74℄ laimed that a lattie does not exist but Sawai and Yamada

noted 2005 Tralle's proof would ontain alulatory errors and onstruted a

lattie [69, Theorem 1℄. This proves the next theorem.

Theorem 3.9.5. There exists an eight-dimensional sympleti and formal solv-

manifold MBG
with even odd degree Betti numbers that is not Hard Lefshetz. �

We sum up the above results in Table 3.7. It is an enlargement of [47, Theorem

3.1 Table 1℄.

Table 3.7: Relations of the Kähler properties

Formality Hard Lefshetz b2i+1 ≡ 0(2) Example

yes yes yes Kähler

yes yes no impossible

yes no yes MBG
, G6.78/Γ×G6.78/Γ

yes no no G6.78/Γ
no yes yes ?

no yes no impossible

no no yes KT ×KT
no no no KT

Unfortunately, the missing example does not arise among the six-dimensional

solvmanifolds that possess the same ohomology as the orresponding Lie algebra.

In order to see this, one has to examine whih of them satisfy the (Hard) Lefshetz

property. We brie�y mention the results.
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By Corollary 2.1.4, a manifold with odd �rst Betti number annot be Lef-

shetz. We now examine suh indeomposable solvmanifolds whose �rst Betti

number is even; in the ompletely solvable ase, these are quotients of G−1
6.3, G

0
6.21

and G−1
6.54.

The proof of the next two propositions is done analogous as that of Theorem

3.9.1. By omplete solvability, we know the solvmanifolds' ohomology and all

possible sympleti forms were determined in the proof of Proposition 3.8.4.1.

Therefore, one an ompute the image of the Lefshetz maps.

Proposition 3.9.6. Let a lattie in G−1
6.3 or G

0
6.21 be given. (Wee have seen above

that suh exists.) Then the orresponding (non-formal) sympleti solvmanifold

(with b1 = 2, b2 = 3) is not Lefshetz, independent of the hoie of the sympleti
form. �

Proposition 3.9.7. Let a lattie in G−1
6.54 be given. (Suh exists by Proposition

3.8.4.6.) The orresponding (non-formal) sympleti solvmanifold (with b1 = 2,
b2 = 5) is Lefshetz but not Hard Lefshetz, independent of the hoie of the

sympleti form. �

Remark. The existene of a lattie in G−1
6.54 was proven by Fernández, de Léon

and Saralegui in [26℄. They also omputed the Betti numbers of the orresponding

solvmanifold, showed that it is not formal and does not satisfy the Hard Lefshetz

property with respet to a ertain sympleti form. Moreover, Fernández and

Muñoz proved in [27, Example 3℄ that the manifold is Lefshetz. (Analogous

alulations work for other sympleti forms.)

In the non-ompletely solvable ase, the situation beomes a little more om-

pliated. If we are willing to make a statement about the Lefshetz property,

we have to know the ohomology and need therefore assumptions on the Betti

numbers.

Proposition 3.9.8. If there is a lattie in one of the non-ompletely solvable

groups G0,0
6.i , i ∈ {10, 36, 70} resp. G0,±1,−1

6.118 suh that the ohomology of the or-

responding solvmanifold Mi is isomorphi to the Lie algebra ohomology of g6.i
(i.e. the ohomology is as small as possible), then one omputes that the following

hold, independent of the hoie of the sympleti forms provided by Proposition

3.8.4.1:

• M10 and M36 are not formal and not Lefshetz.

• M70 is formal and Lefshetz but not Hard Lefshetz.

• M118 is formal and Hard Lefshetz.

(The statements on formality follow from the propositions at the end of Setion

3.8.4.) �
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Finally, we onsider the deomposable sympleti solvmanifolds listed in Table

3.5.

Proposition 3.9.9. Let G/Γ = H1/Γ1 × H2/Γ2 be one of the sympleti solv-

manifolds listed in Table 3.5 suh that in the orresponding row of the table arises

no ≥-sign.
Then G/Γ is formal if and only if it is Hard Lefshetz (independent of the

speial hoie of the sympleti form).

Sketh of the proof. One has an isomorphism from the Lie algebra ohomology

to the solvmanifold's ohomology for eah manifold as in the theorem. Then an

expliit alulation as in the proof of Theorem 3.9.1 yields that the Hard Lefshetz

manifolds among the onsidered are exatly the formal ones.

Note, if b1 is not even, the laim follows diretly from Theorem 2.1.3. �

Remark. G−1
5.15/Γ1×S1

is Lefshetz. The other manifolds in the last proposition

are even not Lefshetz if they are not Hard Lefshetz.

G−1
5.15/Γ1 × S1

is a Lefshetz manifold that is not formal and has even odd

degree Betti numbers.

A similar result as the last proposition holds for the manifolds in Table 3.5

suh that in the orresponding row of the table arises a ≥-sign. But we again

must make an assumption that enables us to ompute the whole ohomology.

Proposition 3.9.10.

(i) Let M = G5.i/Γ × R/Z be a sympleti manifold suh that one of the fol-

lowing onditions holds:

a) i = 13 with q = 0 and b1(M) = 2 as well as b2(M) = 3,

b) i = 17 with p 6= 0, r = ±1 and b1(M) = 2 as well as b2(M) = 3,

) i = 17 with p = 0, r 6∈ {0,±1} and b1(M) = 2 as well as b2(M) = 3,

d) i = 17 with p = 0, r = ±1 and b1(M) = 2 as well as b2(M) = 5.

Then M is formal and Hard Lefshetz (independent of the speial hoie of

the sympleti form).

(ii) Let Γ be a lattie in G0
5.14 suh that M = G0

5.14/Γ×R/Z satis�es b1(M) = 3
and b2(M) = 5.

Then M is not formal and not Lefshetz (independent of the speial hoie

of the sympleti form).

(iii) Let Γ be a lattie in G0
5.18 suh that M = G0

5.18/Γ×R/Z satis�es b1(M) = 2
and b2(M) = 3.

Then M is not formal and Lefshetz but not Hard Lefshetz (independent

of the speial hoie of the sympleti form). �
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Chapter 4

Rational Homotopy and Minimal

Models

In general, it is very di�ult to alulate the homotopy groups πk(X) of a given

topologial spae X . However, if one is willing to forget the torsion, with ertain

assumptions on X, the rational homotopy groups πk(X)⊗Q an be determined

by the theory of minimal models.

4.1 PL forms

In order to relate minimal models to rational homotopy theory, we need a di�er-

ential graded algebra over Q to replae the de Rahm algebra.

Let ∆n
be a standard simplex in Rn+1

and (ΩPL(∆
n), d) the restrition to

∆n
of all di�erential forms in Rn+1

whih an be written as

∑
Pi1...ikdxi1 . . .dxik ,

where Pi1...ik ∈ Q[x1, . . . , xn+1] together with multipliation and di�erential in-

dued by Rn+1
.

Let X = {(σi)i∈I} be a path-onneted simpliial omplex. Set for k ∈ Z

Ωk
PL(X) := {(αi)i∈I |αi ∈ Ωk

PL(σi) ∧ (σi ⊂ ∂σj ⇒ αj |σi
= αi)},

and ΩPL(X) :=
⊕

k∈Z Ω
k
PL(X). It an be veri�ed that the set ΩPL(X) of so-alled

PL forms is a di�erential graded algebra over Q if we use the multipliation and

the di�erential on forms omponentwise.

Analogous to the usual result for the de Rham omplex, we have:

Theorem 4.1.1 ([63, Theorem 1.1.4℄). If X is a path-onneted simpliial om-

plex, then there is an isomorphism H∗(ΩPL(X), d) ∼= H∗(X,Q). �

For suh a simpliial omplex X , we de�ne the (Q-)minimal model MX,Q of

X to be the minimal model of (ΩPL(X), d). Its relation to the minimal model of

a smooth manifold (see Chapter 1) is given by the following theorem.

Theorem 4.1.2 ([63, Theorem 1.3.9℄). Let M be a onneted smooth manifold.

Then there is an isomorphism MM,Q ⊗ R ∼= MM . �

97
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4.2 Nilpotent spaes

Already in is paper [72℄, Sullivan shows that for nilpotent spaes, there is a

orrespondene between the minimal model and the rational homotopy. To state

this result, we need the notion of a nilpotent spae resp. nilpotent module.

Let G be a group, H be a G-module, Γ0
GH := H and

Γi+1
G H := 〈g.h− h | g ∈ G ∧ h ∈ Γi

GH〉 ⊂ Γi
GH

for i ∈ N.
Then, H is alled a nilpotent module if there is n0 ∈ N suh that Γn0

G H = {1}.
We reall the natural π1-module struture of the higher homotopy groups

πn of a topologial spae. For instane, let (X, x0) be a pointed spae with

universal over (X̃, x̃0). It is well known that π1(X, x0) ∼= D(X̃), the group

of dek transformations of the universal overing. Now, beause X̃ is simply-

onneted, every free homotopy lass of self-maps of X̃ determines uniquely a

lass of basepoint preserving self-maps of X̃ (see e.g. [43, Proposition 4.A.2℄).

This means that to every homotopy lass of dek transformations orresponds a

homotopy lass of basepoint preserving self-maps (whih are, in fat, homotopy

equivalenes) (X̃, x̃0) → (X̃, x̃0). These maps provide indued automorphisms

of homotopy groups πn(X̃, x̃0) ∼= πn(X, x0) (n > 1) and this whole proess then

provides an ation of π1(X, x0) on πn(X, x0).

De�nition 4.2.1. A path-onneted topologial spae X whose universal ov-

ering exists is alled nilpotent if for x0 ∈ X the fundamental group π1(X, x0)
is a nilpotent group and the higher homotopy groups πn(X, x0) are nilpotent

π1(X, x0)-modules for all n ∈ N, n ≥ 2. Note, the de�nition is independent of

the hoie of the base point.

Example.

(i) Simply-onneted spaes are nilpotent.

(ii) S1
is nilpotent.

(iii) The artesian produt of two nilpotent spaes is nilpotent. Therefore, all

tori are nilpotent.

(iv) The Klein bottle is not nilpotent.

(v) P n(R) is nilpotent if and only if n ≡ 1(2).

Proof. (i) - (iv) are obvious and (v) an be found in Hilton's book [46℄ on

page 165. �

The main theorem on the rational homotopy of nilpotent spaes is the follow-

ing.
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Theorem 4.2.2. Let X be a path-onneted nilpotent CW-omplex with �nitely

generated homotopy groups. If MX,Q =
∧
V denotes the minimal model, then

for all k ∈ N with k ≥ 2 holds:

HomZ(πk(X),Q) ∼= V k

Using another approah to minimal models (via loalisation of spaes and

Postnikow towers), this theorem is proved for example in [50℄. The proof that

we shall give here is new to the author's knowledge. We will show the following

more general result mentioned (but not proved) by Halperin in [37℄.

Theorem 4.2.3. Let X be a path-onneted triangulable topologial spae whose

universal overing exists. Denote by MX,Q =
∧
V the minimal model and assume

that

(i) eah πk(X) is a �nitely generated nilpotent π1(X)-module for k ≥ 2 and

(ii) the Q-minimal model for K(π1(X), 1) has no generators in degrees greater

than one.

Then for eah k ≥ 2 there is an isomorphism HomZ(πk(X),Q) ∼= V k
.

Remark. The homotopy groups of a ompat nilpotent smooth manifold are

�nitely generated:

By [46, Satz 7.22℄, a nilpotent spae has �nitely generated homotopy if and

only if it has �nitely generated homology with Z-oe�ients. The latter is satis-

�ed for ompat spaes. �

The main tool for the proof of the above theorems is a onsequene of the

fundamental theorem of Halperin [37℄. In the next setion, we quote it and use

it to prove Theorems 4.2.2 and 4.2.3.

4.3 The Halperin-Grivel-Thomas theorem

To state the theorem, let us reall a basi onstrution for �brations.

Let π : E → B be a �bration with path-onneted basis B. Therefore, all

�bers Fb = π−1({b}) are homotopy equivalent to a �xed �ber F sine eah path γ
in B lifts to a homotopy equivalene Lγ : Fγ(0) → Fγ(1) between the �bers over the

endpoints of γ. In partiular, restriting the paths to loops at a basepoint of B we

obtain homotopy equivalenes Lγ : F → F for F the �bre over the basepoint b0.
One an show that this indues a natural π1(B, b0)-module struture onH∗(F,Q).

Theorem 4.3.1 ([63, Theorem 1.4.4℄). Let F,E,B be path-onneted triangulable

topologial spaes and F → E → B a �bration suh that Hn(F,Q) is a nilpotent

π1(B, b0)-module for n ∈ N+. The �bration indues a sequene

(ΩPL(B), dB) −→ (ΩPL(E), dE) −→ (ΩPL(F ), dF )
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of di�erential graded algebras. Suppose that H∗(F,Q) or H∗(B,Q) is of �nite

type.

Then there is a quasi-isomorphism Ψ: (MB,Q ⊗MF,Q , D) → (ΩPL(E), dE)
making the following diagram ommutative:

(ΩPL(B), dB) ✲ (ΩPL(E), dE) ✲ (ΩPL(F ), dF )

(MB,Q , DB)

ρB

✻

⊂ ✲ (MB,Q ⊗MF,Q , D)

Ψ

✻

✲ (MF,Q , DF )

ρF

✻

Furthermore, the left and the right vertial arrows are the minimal models. More-

over, if MF,Q =
∧
VF , there is an ordered basis {vFi | i ∈ I} of VF suh that for

all i, j ∈ I holds D(vFi ) ∈ MB,Q ⊗ (MF,Q)<vFi
and (vFi < vFj ⇒ |vFi | ≤ |vFj |). �

Remark. In general, (MB,Q ⊗ MF,Q , D) is not a minimal di�erential graded

algebra and D|MF,Q
6= DF is possible.

We need some further preparations for the proofs of the above theorems. The

�rst is a reformulation of the results 3.8− 3.10 in [46℄. It justi�es the statement

of the next theorem.

Proposition 4.3.2. Let G be a �nitely generated nilpotent group. Then the set

T (G) of torsion elements of G is a �nite normal subgroup of G and G/T (G) is
�nitely generated. �

Theorem 4.3.3. Let G be a �nite generated nilpotent group and denote by T (G)
its �nite normal torsion group.

Then K(G, 1) and K(G/T (G), 1) share their minimal model.

Proof. Sine T (G) is �nite and Q is a �eld, we get from [22, Setion 4.2℄

Hn(K(T (G), 1)),Q) = {0} for n ∈ N+. The onstrution of the minimal model

in the proof of Theorem 1.1.2 implies that MK(T (G),1),Q has no generators of

degree greater than zero. Now, the theorem follows from the preeding one,

applied to the �bration K(T (G), 1) → K(G, 1) → K(G/T (G), 1). �

Lemma 4.3.4. Let X be topologial spae with universal overing p : X̃ → X.

Then, up to weak homotopy equivalene of the total spae, there is a �bration

X̃ → X → K := K(π1(X), 1). Moreover, for a lass [γ] ∈ π1(K) ∼= π1(X) the

homotopy equivalenes L[γ] : X̃ → X̃ desribed at the beginning of this setion are

given by the orresponding dek transformations of p.

Proof. Denote by π : E → K(π1(X), 1) the universal prinipal π1(X)-bundle.

Regard on E × X̃ the diagonal π1(X)-ation. Then, the �bre bundle

X̃ −→
(
(E × X̃)/π1(X)

)
−→ K

has the desired properties. �
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Proof of Theorem 4.2.3:

Let X be as in the statement of the theorem. For simply-onneted spaes, the

theorem was proven in [23, Theorem 15.11℄. Now, the idea is to use this result

and to onsider the universal over p : X̃ → X . Denote by MX̃,Q =
∧
Ṽ and

MX,Q =
∧
V the minimal models. We shall show

∀k≥2 V
k ∼= Ṽ k. (4.1)

This and the truth of the theorem for simply-onneted spaes implies then the

general ase

∀k≥2 V
k ∼= Ṽ k ∼= HomZ(πk(X̃),Q) = HomZ(πk(X),Q).

It remains to show (4.1): Sine X is triangulable, X and X̃ an be seen as

CW-omplexes. Therefore, up to weak homotopy, there is the following �bration

of CW-omplexes

X̃ −→ X
π−→ K(π1(X), 1) =: K.

We prove below:

H∗(X̃,Q) is of �nite type. (4.2)

H∗(X̃,Q) is a nilpotent π1(X)-module. (4.3)

Then Theorem 4.3.1 implies the existene of a quasi-isomorphism ρ suh that the

following diagram ommutes:

(ΩPL(K), dK) ✲ (ΩPL(X), dX) ✲ (ΩPL(X̃), dX̃)

(MK,Q , DK)

ρK

✻

⊂ ✲ (MK,Q ⊗MX̃,Q , D)

ρ

✻

✲ (MX̃,Q , DX̃)

ρX̃

✻

Finally, we shall see

(MK,Q ⊗MX̃,Q , D) is a minimal di�erential graded algebra (4.4)

and this implies (4.1) sine MK has no generators of degree greater than one by

assumption (ii).

We still have to prove (4.2) - (4.4):

By assumption (i), πk(X) = πk(X̃) is �nitely generated for k ≥ 2. Sine

simply-onneted spaes are nilpotent, [46, Satz 7.22℄ implies the �nite generation

of H∗(X̃,Z) and (4.2) follows.

(4.3) is the statement of Theorem 2.1 (i) ⇒ (ii) in [45℄ � applied to the ation

of π1(X) on πi(X̃).
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ad (4.4): By assumption (ii), MK has no generators in degrees greater than

one, i.e. MK,Q =
∧{vi | i ∈ I} with |vi| = 1. The onstrution of the minimal

model in the proof of Theorem 1.1.2 implies that the minimal model of a simply-

onneted spae has no generators in degree one, i.e. MX̃,Q =
∧{wj | j ∈ J} with

|wj| > 1. We expand the well orderings of I and J to a well ordering of their

union by ∀i∈I ∀j ∈ J i < j. Theorem 4.3.1 implies that D(wj) ontains only
generators whih are ordered before wj . Trivially, D(vi) also has this property,

so we have shown (4.4) and the theorem is proved. �

Proof of Theorem 4.2.2:

Let X be a path-onneted nilpotent CW-omplex with �nitely generated fun-

damental group and �nitely generated homotopy. By Theorem 4.2.3, we have to

show that the minimal model of K(π1(X), 1) has no generators in degrees greater

than one. Theorem 4.3.3 implies that it su�es to show that K(π1(X)/T, 1) has
this property, where T denotes the torsion group of π1(X). Γ := π1(X)/T is

a �nitely generated nilpotent group without torsion. By [66, Theorem 2.18℄, Γ
an be embedded as a lattie in a onneted and simply-onneted nilpotent Lie

group G. Therefore, the nilmanifold G/Γ is a K(Γ, 1) and from Theorem 3.2.11

follows that its minimal model has no generators in degrees greater than one. �



Appendix A

Lists of Lie Algebras

In Table A.1, we give the isomorphism lasses of Lie algebras of the simply-

onneted solvable Lie groups up to dimension four that possesses latties. The

designation gi,j means the j-th indeomposable solvable Lie algebra of dimension

i. The hoie of the integer j bases on the notation of [56℄. The supersripts,

if any, give the values of the ontinuous parameters on whih the algebra de-

pends. (We do not laim that the orresponding Lie groups admit a lattie for

all parameters. We just know that there exist suh for ertain parameters!)

Table A.1: Solvmanifolds up to dimension four

[Xi, Xj] pl. solv.

g1 abelian

2g1 abelian

3g1 abelian

g3.1 [X2, X3] = X1 nilpotent

g−1
3.4 [X1, X3] = X1, [X2, X3] = −X2 yes

g03.5 [X1, X3] = −X2, [X2, X3] = X1 no

4g1 abelian

g3.1 ⊕ g1 [X2, X3] = X1 nilpotent

g−1
3.4 ⊕ g1 [X1, X3] = X1, [X2, X3] = −X2 yes

g03.5 ⊕ g1 [X1, X3] = −X2, [X2, X3] = X1 no

g4.1 [X2, X4] = X1, [X3, X4] = X2 nilpotent

g
p,−p−1
4.5 [X1, X4] = X1, [X2, X4] = pX2, yes

[X3, X4] = (−p− 1)X3, − 1
2
≤ p < 0

g
−2p,p
4.6 [X1, X4] = −2pX1, [X2, X4] = pX2 −X3, no

[X3, X4] = X2 + pX3, p > 0
g−1
4.8 [X2, X3] = X1, [X2, X4] = X2, [X3, X4] = −X3 yes

g04.9 [X2, X3] = X1, [X2, X4] = −X3, [X3, X4] = X2 no
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The set of non-isomorphi �ve dimensional nilpotent Lie algebras is exhausted by

three types of deomposable algebras and six indeomposables whih are listed

in Table A.2. The designation is taken from [57℄.

Table A.2: 5-dimensional nilpotent algebras

[Xi, Xj]

5g1 abelian

g3.1 ⊕ 2g1 [X2, X3] = X1

g4.1 ⊕ g1 [X2, X4] = X1, [X3, X4] = X2

g5.1 [X3, X5] = X1, [X4, X5] = X2

g5.2 [X2, X5] = X1, [X3, X5] = X2, [X4, X5] = X3

g5.3 [X2, X4] = X3, [X2, X5] = X1, [X4, X5] = X2

g5.4 [X2, X4] = X1, [X3, X5] = X1

g5.5 [X3, X4] = X1, [X2, X5] = X1, [X3, X5] = X2

g5.6 [X3, X4] = X1, [X2, X5] = X1, [X3, X5] = X2, [X4, X5] = X3

There are 24 lasses of solvable and non-nilpotent deomposable Lie algebras in

dimension �ve. The unimodular among them are the ones in Table A.3.

Table A.3: 5-dimensional deomposable unimodular non-nilpotent algebras

[Xi, Xj] pl. solv.

g−1
3.4 ⊕ 2g1 [X1, X3] = X1, [X2, X3] = −X2 yes

g03.5 ⊕ 2g1 [X1, X3] = −X2, [X2, X3] = X1 no

g−2
4.2 ⊕ g1 [X1, X4] = −2X1, [X2, X4] = X2, yes

[X3, X4] = X2 +X3

g
p,−p−1
4.5 ⊕ g1 [X1, X4] = X1, [X2, X4] = pX2, yes

[X3, X4] = (−p− 1)X3, − 1
2
≤ p < 0

g
−2p,p
4.6 ⊕ g1 [X1, X4] = −2pX1, [X2, X4] = pX2 −X3, no

[X3, X4] = X2 + pX3, p > 0
g−1
4.8 ⊕ g1 [X2, X3] = X1, [X2, X4] = X2, [X3, X4] = −X3 yes

g04.9 ⊕ g1 [X2, X3] = X1, [X2, X4] = −X3, [X3, X4] = X2 no

Exept for g4.2 ⊕ g1, to eah lass of algebras there is a onneted and simply-

onneted solvable Lie group admitting a lattie and has a Lie algebra belonging

to the lass.

Mubarakzjanov's list in [57℄ ontains 33 lasses of �ve-dimensional indeompos-

able non-nilpotent solvable Lie algebras, namely g5.7, . . . , g5.39. We list the uni-

modular among them in Tables A.4 to A.7.

Note that there is a minor misprint in [57℄ whih has been orreted in the list

below.
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Table A.4: 5-dimensional indeomposable unimodular almost abelian algebras

[Xi, Xj] pl. solv.

g
p,q,r
5.7 [X1, X5] = X1, [X2, X5] = pX2, yes

[X3, X5] = qX3, [X4, X5] = rX4,
−1 ≤ r ≤ q ≤ p ≤ 1, pqr 6= 0, p + q + r = −1

g−1
5.8 [X2, X5] = X1, [X3, X5] = X3, [X4, X5] = −X4, yes

g
p,−2−p
5.9 [X1, X5] = X1, [X2, X5] = X1 +X2, [X3, X5] = pX3, yes

[X4, X5] = (−2− p)X4, p ≥ −1
g−3
5.11 [X1, X5] = X1, [X2, X5] = X1 +X2, yes

[X3, X5] = X2 +X3, [X4, X5] = −3X4,

g
−1−2q,q,r
5.13 [X1, X5] = X1, [X2, X5] = (−1 − 2q)X2, no

[X3, X5] = qX3 − rX4, [X4, X5] = rX3 + qX4,
−1 ≤ q ≤ 0, q 6= −1

2
, r 6= 0

g05.14 [X2, X5] = X1, [X3, X5] = −X4, [X4, X5] = X3 no

g−1
5.15 [X1, X5] = X1, [X2, X5] = X1 +X2, yes

[X3, X5] = −X3, [X4, X5] = X3 −X4

g
−1,q
5.16 [X1, X5] = X1, [X2, X5] = X1 +X2, no

[X3, X5] = −X3 − qX4, [X4, X5] = qX3 −X4,
q 6= 0

g
p,−p,r
5.17 [X1, X5] = pX1 −X2, [X2, X5] = X1 + pX2, no

[X3, X5] = −pX3 − rX4, [X4, X5] = rX3 − pX4,
r 6= 0

g05.18 [X1, X5] = −X2, [X2, X5] = X1, no

[X3, X5] = X1 −X4, [X4, X5] = X2 +X3

Table A.5: 5-dimensional indeomposable unimodular algebras with nilradial

g3.1 ⊕ g1

[Xi, Xj] pl. solv.

g
p,−2p−2
5.19 [X2, X3] = X1, [X1, X5] = (1 + p)X1, [X2, X5] = X2, yes

[X3, X5] = pX3, [X4, X5] = (−2p− 2)X4, p 6= −1
g−1
5.20 [X2, X3] = X1, [X2, X5] = X2, [X3, X5] = −X3, yes

[X4, X5] = X1

g−4
5.23 [X2, X3] = X1, [X1, X5] = 2X1, [X2, X5] = X2 +X3, yes

[X3, X5] = X3, [X4, X5] = −4X4

g
p,4p
5.25 [X2, X3] = X1, [X1, X5] = 2pX1, [X2, X5] = pX2 +X3, no

[X3, X5] = −X2 + pX3, [X4, X5] = −4pX4, p 6= 0

g
0,ε
5.26 [X2, X3] = X1, [X2, X5] = X3, [X3, X5] = −X2, no

[X4, X5] = εX1, ε = ±1

g
− 3

2

5.28 [X2, X3] = X1, [X1, X5] = −1
2
X1, [X2, X5] = −3

2
X2, yes

[X3, X5] = X3 +X4, [X4, X5] = X4
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Table A.6: 5-dimensional indeomposable unimodular algebras with nilradial

g4.1

[Xi, Xj] pl. solv.

g
− 4

3

5.30 [X2, X4] = X1, [X3, X4] = X2, [X1, X5] =
2
3
X1, yes

[X2, X5] = −1
3
X2, [X3, X5] = −4

3
X3, [X4, X5] = X4

Table A.7: 5-dimensional indeomposable unimodular algebras with nilradial

3g1
[Xi, Xj] pl. solv.

g
−1,−1
5.33 [X1, X4] = X1, [X3, X4] = −X3, yes

[X2, X5] = X2, [X3, X5] = −X3

g
−2,0
5.35 [X1, X4] = −2X1, [X2, X4] = X2, [X3, X4] = X3, no

[X2, X5] = −X3, [X3, X5] = X2

There are ten lasses of deomposable nilpotent Lie algebras in dimension six:

6g1, g3.1 ⊕ 3g1, 2g3.1, g4.1 ⊕ 2g1 and g5.i ⊕ g1 for i ∈ {1, . . . 6}.
Tables A.8 and A.9 ontain the six-dimensional indeomposable nilpotent real Lie

algebras. They base on Morozov's lassi�ation in [54℄, where nilpotent algebras

over a �eld of harateristi zero are determined. Note that over R, there is only
one isomorphism lass of Morozov's indeomposable type 5 resp. type 10 and

type 14 resp. 18 splits into two non-isomorphi ones.

Table A.8: 6-dimensional indeomposable nilpotent algebras

[Xi, Xj]

g6.N1 [X1, X2] = X3, [X1, X3] = X4, [X1, X5] = X6

g6.N2 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5, [X1, X5] = X6

g6.N3 [X1, X2] = X6, [X1, X3] = X4, [X2, X3] = X5

g6.N4 [X1, X2] = X5, [X1, X3] = X6, [X2, X4] = X6

g6.N5 [X1, X3] = X5, [X1, X4] = X6, [X2, X3] = −X6, [X2, X4] = X5

g6.N6 [X1, X2] = X6, [X1, X3] = X4, [X1, X4] = X5, [X2, X3] = X5

g6.N7 [X1, X3] = X4, [X1, X4] = X5, [X2, X3] = X6

g6.N8 [X1, X2] = X3 +X5, [X1, X3] = X4, [X2, X5] = X6

g6.N9 [X1, X2] = X3, [X1, X3] = X4, [X1, X5] = X6, [X2, X3] = X5

g6.N10 [X1, X2] = X3, [X1, X3] = X5, [X1, X4] = X6,
[X2, X3] = −X6, [X2, X4] = X5

g6.N11 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5, [X2, X3] = X6

g6.N12 [X1, X3] = X4, [X1, X4] = X6, [X2, X5] = X6

g6.N13 [X1, X2] = X5, [X1, X3] = X4, [X1, X4] = X6, [X2, X5] = X6

g±1
6.N14 [X1, X3] = X4, [X1, X4] = X6, [X2, X3] = X5, [X2, X5] = ±X6

g6.N15 [X1, X2] = X3 +X5, [X1, X3] = X4, [X1, X4] = X6, [X2, X5] = X6
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Table A.9: 6-dimensional indeomposable nilpotent algebras (ontinued)

[Xi, Xj]

g6.N16 [X1, X3] = X4, [X1, X4] = X5, [X1, X5] = X6,
[X2, X3] = X5, [X2, X4] = X6

g6.N17 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X6, [X2, X5] = X6

g±1
6.N18 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X6,

[X2, X3] = X5, [X2, X5] = ±X6

g6.N19 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5,
[X1, X5] = X6, [X2, X3] = X6

g6.N20 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5,
[X1, X5] = X6, [X2, X3] = X5, [X2, X4] = X6

g6.N21 [X1, X2] = X3, [X1, X5] = X6, [X2, X3] = X4,
[X2, X4] = X5, [X3, X4] = X6

g6.N22 [X1, X2] = X3, [X1, X3] = X5, [X1, X5] = X6,
[X2, X3] = X4, [X2, X4] = X5, [X3, X4] = X6

Mubarakzjanov's list in [58℄ ontains 99 lasses of six-dimensional indeomposable

almost nilpotent Lie algebras, namely g6.1, . . . , g6.99.
As �rst remarked by Turkowski, there is one algebra missing. The omplete (and

partly orreted) list an be found in the artile [11℄ of Campoamor-Stursberg

1

,

where the missing algebra is denoted by g∗6.92.
We list the unimodular among this 100 algebras in Tables A.10 to A.23 (where

some minor misprints have been orreted). Note that there is no table with Lie

algebras with nilradial g5.6 sine the only suh algebra is not unimodular.

Table A.10: 6-dimensional indeomposable unimodular almost abelian algebras

[Xi, Xj] pl. solv.

g
a,b,c,d
6.1 [X1, X6] = X1, [X2, X6] = aX2, [X3, X6] = bX3, yes

[X4, X6] = cX4, [X5, X6] = dX5,
0 < |d| ≤ |c| ≤ |b| ≤ |a| ≤ 1, a+ b+ c+ d = −1

1

The author wishes to express his gratitude to R. Campoamor-Stursberg for providing him

with opies of [11℄ and [58℄.
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Table A.11: 6-dimensional indeomposable unimodular almost abelian algebras

(ontinued)

[Xi, Xj ] . s.

g
a,c,d
6.2 [X1, X6] = aX1, [X2, X6] = X1 + aX2, [X3, X6] = X3, yes

[X4, X6] = cX4, [X5, X6] = dX5,
0 < |d| ≤ |c| ≤ 1, 2a+ c+ d = −1

g
− d+1

3
,d

6.3 [X1, X6] = −d+1
3
X1, [X2, X6] = X1 − d+1

3
X2, yes

[X3, X6] = X2 − d+1
3
X3, [X4, X6] = X4, [X5, X6] = dX5,
0 < |d| ≤ 1,

g
− 1

4

6.4 [X1, X6] = −1
4
X1, [X2, X6] = X1 − 1

4
X2, yes

[X3, X6] = X2 − 1
4
X3, [X4, X6] = X3 − 1

4
X4, [X5, X6] = X5

g
a,b
6.6 [X1, X6] = X1, [X2, X6] = aX2, [X3, X6] = X2 + aX3, yes

[X4, X6] = bX4, [X5, X6] = X4 + bX5, a ≤ b, a+ b = −1
2

g
a,− 2

3
a

6.7 [X1, X6] = aX1, [X2, X6] = X1 + aX2, [X3, X6] = X2 + aX3, yes

[X4, X6] = −3
2
aX4, [X5, X6] = X4 − 3

2
aX5, a 6= 0

g
a,b,c,p
6.8 [X1, X6] = aX1, [X2, X6] = bX2, [X3, X6] = cX3, no

[X4, X6] = pX4 −X5, [X5, X6] = X4 + pX5,
0 < |c| ≤ |b| ≤ |a|, a + b+ c+ 2p = 0

g
a,b,p
6.9 [X1, X6] = aX1, [X2, X6] = bX2, [X3, X6] = X2 + bX3, no

[X4, X6] = pX4 −X5, [X5, X6] = X4 + pX5,
a 6= 0, a + 2b+ 2p = 0

g
a,− 3

2
a

6.10 [X1, X6] = aX1, [X2, X6] = X1 + aX2, [X3, X6] = X2 + aX3, no

[X4, X6] = −3
2
aX4 −X5, [X5, X6] = X4 − 3

2
aX5

g
a,p,q,s
6.11 [X1, X6] = aX1, [X2, X6] = pX2 −X3, [X3, X6] = X2 + pX3, no

[X4, X6] = qX4 − sX5, [X5, X6] = sX4 + qX5,
as 6= 0, a+ 2p+ 2q = 0

g
−4p,p
6.12 [X1, X6] = −4pX1, [X2, X6] = pX2 −X3, no

[X3, X6] = X2 + pX3, [X4, X6] = X2 + pX4 −X5,
[X5, X6] = X3 +X4 + pX5, p 6= 0

Table A.12: 6-dimensional indeomposable unimodular algebras with nilradial

g3.1 ⊕ 2g1
[Xi, Xj] pl. solv.

g
a,b,h
6.13 [X2, X3] = X1, [X1, X6] = (a+ b)X1, [X2, X6] = aX2, yes

[X3, X6] = bX3, [X4, X6] = X4, [X5, X6] = hX5,
a 6= 0, 2a+ 2b+ h = −1

g
a,b
6.14 [X2, X3] = X1, [X1, X6] = (a+ b)X1, [X2, X6] = aX2, yes

[X3, X6] = bX3, [X4, X6] = X4, [X5, X6] = X1 + (a + b)X5,
a 6= 0, a + b = −1

3
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Table A.13: 6-dimensional indeomposable unimodular algebras with nilradial

g3.1 ⊕ 2g1 (ontinued)

[Xi, Xj] . s.

g−1
6.15 [X2, X3] = X1, [X2, X6] = X2 +X4, yes

[X3, X6] = −X3 +X5, [X4, X6] = X4, [X5, X6] = −X5,

g
− 1

2
,0

6.17 [X2, X3] = X1, [X1, X6] = −1
2
X1, [X2, X6] = −1

2
X2, yes

[X3, X6] = X4, [X5, X6] = X5,

g
a,−2a−3
6.18 [X2, X3] = X1, [X1, X6] = (1 + a)X1, [X2, X6] = aX2, yes

[X3, X6] = X3 +X4, [X4, X6] = X4,
[X5, X6] = −(2a+ 3)X5, a 6= −3

2

g
− 4

3

6.19 [X2, X3] = X1, [X1, X6] = −1
3
X1, [X2, X6] = −4

3
X2, yes

[X3, X6] = X3 +X4, [X4, X6] = X4, [X5, X6] = X1 − 1
3
X5

g−3
6.20 [X2, X3] = X1, [X1, X6] = X1, [X3, X6] = X3 +X4, yes

[X4, X6] = X1 +X4, [X5, X6] = −3X5

ga6.21 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, yes

[X3, X6] = aX3, [X4, X6] = X4, [X5, X6] = −(4a + 1)X5,
a 6= −1

4

g
− 1

6

6.22 [X2, X3] = X1, [X1, X6] = −1
3
X1, [X2, X6] = −1

6
X2 +X3, yes

[X3, X6] = −1
6
X3, [X4, X6] = X4, [X5, X6] = X1 − 1

3
X5

g
a,−7a,ε
6.23 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, yes

[X3, X6] = aX3 +X4, [X4, X6] = aX4,
[X5, X6] = εX1 − 5aX5, εa = 0

g
b,−1−b
6.25 [X2, X3] = X1, [X1, X6] = −bX1, yes

[X2, X6] = X2, [X3, X6] = −(1 + b)X3,
[X4, X6] = bX4 +X5, [X5, X6] = bX5

g−1
6.26 [X2, X3] = X1, [X2, X6] = X2, [X3, X6] = −X3 yes

[X4, X6] = X5, [X5, X6] = X1

g
−2b,b,0
6.27 [X2, X3] = X1, [X1, X6] = −bX1, [X2, X6] = −2bX2, yes

[X3, X6] = bX3 +X4, [X4, X6] = bX4 +X5,
[X5, X6] = bX5, b 6= 0

g−2
6.28 [X2, X3] = X1, [X1, X6] = 2X1, [X2, X6] = X2 +X3, yes

[X3, X6] = X3, [X4, X6] = −2X4 +X5, [X5, X6] = −2X5

g
−2b,b,ε
6.29 [X2, X3] = X1, [X1, X6] = −bX1, [X2, X6] = −2bX2, yes

[X3, X6] = bX3 +X4, [X4, X6] = bX4 +X5,
[X5, X6] = εX1 + bX5, εb = 0 (?)

g
a,−6a−h,h,ε
6.32 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = −X2 + aX3, [X4, X6] = εX1 + (2a+ h)X4,
[X5, X6] = −(6a + h)X5, a > −1

4
h, εh = 0
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Table A.14: 6-dimensional indeomposable unimodular algebras with nilradial

g3.1 ⊕ 2g1 (ontinued)

[Xi, Xj ] . s.

g
a,−6a
6.33 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = −X2 + aX3, [X4, X6] = −6aX4,
[X5, X6] = X1 + 2aX5, a ≥ 0

g
a,−4a,ε
6.34 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = −X2 + aX3, [X4, X6] = −2aX4,
[X5, X6] = εX1 − 2aX5, εa = 0

g
a,b,c
6.35 [X2, X3] = X1, [X1, X6] = (a+ b)X1, [X2, X6] = aX2, no

[X3, X6] = bX3, [X4, X6] = cX4 +X5,
[X5, X6] = −X4 + cX5, a + b+ c = 0, a2 + b2 6= 0

g
a,−2a
6.36 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = aX3, [X4, X6] = −2aX4 +X5,
[X5, X6] = −X4 − 2aX5

g
−a,−2a,s
6.37 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = −X2 + aX3, [X4, X6] = −2aX4 + sX5,
[X5, X6] = −sX4 − 2aX5, s 6= 0

g06.38 [X2, X3] = X1, [X2, X6] = X3 +X4, no

[X3, X6] = −X2 +X5, [X4, X6] = X5, [X5, X6] = −X4

Table A.15: 6-dimensional indeomposable unimodular algebras with nilradial

g4.1 ⊕ g1

[Xi, Xj] . s.

g
−4−3h,h
6.39 [X1, X5] = X2, [X4, X5] = X1, [X1, X6] = (1 + h)X1, yes

[X2, X6] = (2 + h)X2, [X3, X6] = −(4 + 3h)X3,
[X4, X6] = hX4, [X5, X6] = X5, h 6= −4

3

g
− 3

2

6.40 [X1, X5] = X2, [X4, X5] = X1, yes

[X1, X6] = −1
2
X1, [X2, X6] =

1
2
X2,

[X3, X6] = X2 +
1
2
X3, [X4, X6] = −3

2
X4, [X5, X6] = X5

g−1
6.41 [X1, X5] = X2, [X4, X5] = X1, yes

[X2, X6] = X2, [X3, X6] = −X3,
[X4, X6] = X3 −X4, [X5, X6] = X5
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Table A.16: 6-dimensional indeomposable unimodular algebras with nilradial

g4.1 ⊕ g1 (ontinued)

[Xi, Xj] . s.

g
− 5

3

6.42 [X1, X5] = X2, [X4, X5] = X1, yes

[X1, X6] = −2
3
X1, [X2, X6] =

1
3
X2, [X3, X6] = X3,

[X4, X6] = −5
3
X4, [X5, X6] = X3 +X5

g−7
6.44 [X1, X5] = X2, [X4, X5] = X1, yes

[X1, X6] = 2X1, [X2, X6] = 3X2, [X3, X6] = −7X3,
[X4, X6] = X4, [X5, X6] = X4 +X5

g
−3,ε
6.47 [X1, X5] = X2, [X4, X5] = X1, yes

[X1, X6] = X1, [X2, X6] = X2, [X3, X6] = −3X3,
[X4, X6] = εX2 +X4, ε ∈ {0,±1}

Table A.17: 6-dimensional indeomposable unimodular algebras with nilradial

g5.1

[Xi, Xj] . s.

g
2(1+l),l
6.54 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = X1, [X2, X6] = lX2, [X3, X6] = (−1− 2l)X3,
[X4, X6] = (−2− l)X4, [X5, X6] = 2(1 + l)X5

g−4
6.55 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = X1, [X2, X6] = −3X2, [X3, X6] = 4X3,
[X4, X6] = X1 +X4, [X5, X6] = −3X5

g
4

3

6.56 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = X1, [X2, X6] = −1
3
X2, [X3, X6] = X2 − 1

3
X3,

[X4, X6] = −5
3
X4, [X5, X6] =

4
3
X5

g
− 2

3

6.57 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = X1, [X2, X6] = −4
3
X2, [X3, X6] =

5
3
X3,

[X4, X6] = −2
3
X4, [X5, X6] = X4 − 2

3
X5

g
− 3

4

6.61 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = 2X1, [X2, X6] = −3
2
X2, [X3, X6] = X3,

[X4, X6] = −5
2
X4, [X5, X6] = X3 +X5

g−1
6.63 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = X1, [X2, X6] = −X2, [X3, X6] = X3,
[X4, X6] = X2 −X4

g
4l,l
6.65 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = lX1 +X2, [X2, X6] = lX2, [X3, X6] = −3lX3 +X4,
[X4, X6] = −3lX4, [X5, X6] = 4lX5
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Table A.18: 6-dimensional indeomposable unimodular algebras with nilradial

g5.1 (ontinued)

[Xi, Xj] pl. solv.

g
4p,p
6.70 [X3, X5] = X1, [X4, X5] = X2, no

[X1, X6] = pX1 +X2, [X2, X6] = −X1 + pX2,
[X3, X6] = −3pX3 +X4, [X4, X6] = −X3 − 3pX4,

[X5, X6] = 4pX5

Table A.19: 6-dimensional indeomposable unimodular algebras with nilradial

g5.2

[Xi, Xj] pl. solv.

g
− 7

4

6.71 [X2, X5] = X1, [X3, X5] = X2, [X4, X5] = X3, yes

[X1, X6] =
5
4
X1, [X2, X6] =

1
4
X2, [X3, X6] = −3

4
X3,

[X4, X6] = −7
4
X4, [X5, X6] = X5

Table A.20: 6-dimensional indeomposable unimodular algebras with nilradial

g5.3

[Xi, Xj] pl. solv.

g−1
6.76 [X2, X4] = X3, [X2, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = −X1, [X3, X6] = X3,
[X4, X6] = X4, [X5, X6] = −X5

g6.78 [X2, X4] = X3, [X2, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = −X1, [X3, X6] = X3,
[X4, X6] = X3 +X4, [X5, X6] = −X5

Table A.21: 6-dimensional indeomposable unimodular algebras with nilradial

g5.4

[Xi, Xj] pl. solv.

g
0,l
6.83 [X2, X4] = X1, [X3, X5] = X1, yes

[X2, X6] = lX2, [X3, X6] = lX3,
[X4, X6] = −lX4, [X5, X6] = −X4 − lX5

g6.84 [X2, X4] = X1, [X3, X5] = X1, yes

[X2, X6] = X2, [X4, X6] = −X4, [X5, X6] = X3
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Table A.22: 6-dimensional indeomposable unimodular algebras with nilradial

g5.4 (ontinued)

[Xi, Xj] pl. solv.

g
0,µ0,ν0
6.88 [X2, X4] = X1, [X3, X5] = X1, pl. solv.

[X2, X6] = µ0X2 + ν0X3, [X3, X6] = −ν0X2 + µ0X3, m
[X4, X6] = −µ0X4 + ν0X5, [X5, X6] = −ν0X4 − µ0X5 ν0 = 0

g
0,ν0,s
6.89 [X2, X4] = X1, [X3, X5] = X1, pl. solv.

[X2, X6] = sX2, [X3, X6] = ν0X5, m
[X4, X6] = −sX4, [X5, X6] = −ν0X3 ν0 = 0

g
0,ν0
6.90 [X2, X4] = X1, [X3, X5] = X1, pl. solv.

[X2, X6] = X4, [X3, X6] = ν0X5, m
[X4, X6] = X2, [X5, X6] = −ν0X3, ν0 6= 1 ν0 = 0

g6.91 [X2, X4] = X1, [X3, X5] = X1, no

[X2, X6] = X4, [X3, X6] = X5,
[X4, X6] = X2, [X5, X6] = −X3

g
0,µ0,ν0
6.92 [X2, X4] = X1, [X3, X5] = X1, no

[X2, X6] = ν0X3, [X3, X6] = −µ0X2,
[X4, X6] = µ0X5, [X5, X6] = −ν0X4

g06.92∗ [X2, X4] = X1, [X3, X5] = X1, no

[X2, X6] = X4, [X3, X6] = X5,
[X4, X6] = −X2, [X5, X6] = −X3

g
0,ν0
6.93 [X2, X4] = X1, [X3, X5] = X1, pl. solv.

[X2, X6] = X4 + ν0X5, [X3, X6] = ν0X4, m
[X4, X6] = X2 − ν0X3, [X5, X6] = −ν0X2 |ν0| ≤ 1

2

Table A.23: 6-dimensional indeomposable unimodular algebras with nilradial

g5.5

[Xi, Xj] pl. solv.

g−2
6.94 [X3, X4] = X1, [X2, X5] = X1, [X3, X5] = X2, yes

[X2, X6] = −X2, [X3, X6] = −2X3,
[X4, X6] = 2X4, [X5, X6] = X5

The six-dimensional solvable Lie algebras with four-dimensional nilradial were

lassi�ed by Turkowski in [75℄. We list the unimodular among them in Tables

A.24 � A.26. Note that there is no table with Lie algebras with nilradial g4.1
sine the only suh algebra is not unimodular.

The equations for the twenty-�fth algebra in Turkowoski's list ontain a minor

misprint that we have orreted here.
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Table A.24: 6-dimensional indeomposable unimodular algebras with nilradial

4g1
[Xi, Xj] . s.

g
a,b,c,d
6.101 [X5, X1] = aX1, [X5, X2] = cX2, [X5, X4] = X4, yes

[X6, X1] = bX1, [X6, X2] = dX2, [X6, X3] = X3,
a+ c = −1, b+ d = −1, ab 6= 0, c2 + d2 6= 0

g
−1,b,−2−b
6.102 [X5, X1] = −X1, [X5, X2] = X2, [X5, X3] = X4, yes

[X6, X1] = bX1, [X6, X2] = (−2 − b)X2,
[X6, X3] = X3, [X6, X4] = X4

g
−2,−1
6.105 [X5, X1] = −2X1, [X5, X3] = X3 +X4, yes

[X5, X4] = X4, [X6, X1] = −X1, [X6, X2] = X2

g
−1,b,0
6.107 [X5, X1] = −X1, [X5, X2] = −X2, [X5, X3] = X3 +X4, no

[X5, X4] = X4, [X6, X1] = X2, [X6, X2] = −X1

g
a,b,−a,d
6.113 [X5, X1] = aX1, [X5, X2] = −aX2, [X5, X3] = X4, no

[X6, X1] = bX1, [X6, X2] = dX2, [X6, X3] = X3,
[X6, X4] = X4, a

2 + b2 6= 0, a2 + d2 6= 0, b+ d = −2

g
a,−1,− a

2

6.114 [X5, X1] = aX1, [X5, X3] = −a
2
X3 +X4, no

[X5, X4] = −X3 +
a
2
X4, [X6, X1] = −X1,

[X6, X2] = X2, a 6= 0

g
−1,b,c,−c
6.115 [X5, X1] = X1, [X5, X2] = X2, no

[X5, X3] = −X3 + bX4, [X5, X4] = −bX3 −X4,
[X6, X1] = cX1 +X2, [X6, X2] = −X1 + cX2,
[X6, X3] = −cX3, [X6, X4] = −cX4, b 6= 0

g
0,−1
6.116 [X5, X1] = X2, [X5, X3] = X4, [X5, X4] = −X3, no

[X6, X1] = X1, [X6, X2] = X2,
[X6, X3] = −X3, [X6, X4] = −X4

g
0,b,−1
6.118 [X5, X1] = X2, [X5, X2] = −X1, [X5, X3] = bX4, no

[X5, X4] = −bX3, [X6, X1] = X1, [X6, X2] = X2,
[X6, X3] = −X3, [X6, X4] = −X4, b 6= 0

g
−1,−1
6.120 [X5, X2] = −X2, [X5, X4] = X4, [X5, X6] = X1, yes

[X6, X2] = −X1, [X6, X3] = X3

g
0,−2
6.125 [X5, X3] = X4, [X5, X4] = −X3, [X5, X6] = X1, no

[X6, X2] = −2X2, [X6, X3] = X3, [X6, X4] = X4

Table A.25: 6-dimensional indeomposable unimodular algebras with nilradial

g3.1 ⊕ g1

[Xi, Xj ] . s.

g
−2,−2
6.129 [X2, X3] = X1, [X5, X1] = X1, [X5, X2] = X2, yes

[X5, X4] = −2X4, [X6, X1] = X1,
[X6, X3] = X3, [X6, X4] = −2X4
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Table A.26: 6-dimensional indeomposable unimodular algebras with nilradial

g3.1 ⊕ g1 (ontinued)

[Xi, Xj] . s.

g
0,−4
6.135 [X2, X3] = X1, [X5, X2] = X3, [X5, X3] = −X1, no

[X6, X1] = 2X1, [X6, X2] = X2,
[X6, X3] = X3, [X6, X4] = −4X4

In the introdution of [58℄, Mubarakzjanov quotes his own result that a six-

dimensional solvable Lie algebra with three-dimensional nilradial is deompos-

able. Therefore, by Proposition 3.2.5, we have listed all unimodular indeompos-

able solvable Lie algebras of dimension six.

The �rst Betti numbers of the six-dimensional unimodular indeomposable Lie

algebras are listed in Tables A.27 � A.29. The word �always� means that the

ertain value arises independent of the parameters on whih the Lie algebra de-

pends, but we suppose that the parameters are hosen suh that Lie algebra is

unimodular. The word �otherwise� in the tables means that this value arises for

all parameters suh that the Lie algebra is unimodular and the parameters are

not mentioned in another olumn of the Lie algebra's row.

Table A.27: b1(g6.i) for g6.i unimodular

i b1 = 1 b1 = 2 b1 = 3

1 always - -

2 a 6= 0 a = 0 -

3 d 6= −1 d = −1 -

4 always - -

6 a, b 6= 0 a = −1
2
∧ b = 0 -

7 always - -

8 always - -

9 b 6= 0 b = 0 -

10 a 6= 0 a = 0 -

11 always - -

12 always - -

13 b 6= 0 ∧ h 6= 0 otherwise a = −1
2
∧ b = h = 0

14 otherwise a = −1
3
∧ b = 0 -

15 always - -

17 - always -

18 a 6= 0 a = 0 -

19 always - -

20 - always -
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Table A.28: b1(g6.i) for g6.i unimodular (ontinued)

i b1 = 1 b1 = 2 b1 = 3 b1 = 4 b1 = 5

21 a 6= 0 a = 0 - - -

22 always - - - -

23 a 6= 0 - a = 0 - -

25 b /∈ {−1, 0} b ∈ {−1, 0} - - -

26 - always - - -

27 always - - - -

28 always - - - -

29 b 6= 0 - b = 0 - -

32 h /∈ {−2a,−6a} otherwise - - -

33 a 6= 0 - a = 0 - -

34 a 6= 0 - a = 0 - -

35 a, b 6= 0 otherwise - - -

36 a 6= 0 a = 0 - - -

37 always - - - -

38 always - - - -

39 h 6= 0 h = 0 - - -

40 always - - - -

41 always - - - -

42 always - - - -

44 always - - - -

47 - always - - -

54 l /∈ {−2,−1,−1
2
} l ∈ {−2,−1,−1

2
} - - -

55 always - - - -

56 always - - - -

57 always - - - -

61 always - - - -

63 - always - - -

65 l 6= 0 - l = 0 - -

70 p 6= 0 p = 0 - - -

71 always - - - -

76 always - - - -

78 always - - - -

83 l 6= 0 - - l = 0 -

84 - always - - -

88 µ0 6= 0 ∨ ν0 6= 0 - - - µ0 = ν0 = 0
89 ν0 6= 0 ∧ s 6= 0 - otherwise - ν0 = s = 0
90 ν0 6= 0 - ν0 = 0 - -
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Table A.29: b1(g6.i) for g6.i unimodular (ontinued)

i b1 = 1 b1 = 2 b1 = 3 b1 = 4 b1 = 5

91 always - - - -

92 µ0 6= 0 ∧ ν0 6= 0 - otherwise - µ0 = ν0 = 0
92∗ always - - - -

93 ν0 6= 0 - ν0 = 0 - -

94 always - - - -

101 - always - - -

102 - always - - -

105 - always - - -

107 - always - - -

113 - always - - -

114 - always - - -

115 - always - - -

116 - always - - -

118 - always - - -

120 - always - - -

125 - always - - -

129 - always - - -

135 - always - - -
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Appendix B

Integer Polynomials

In this thesis, we often try to use neessary onditions for a matrix to be on-

jugated to an integer matrix. We state brie�y the used results. Vie versa, we

sometimes want to �nd integer matries with given minimal polynomial. We also

present a few onstrutions.

Let be n ∈ N+, K a �eld and A ∈ M(n, n;K). The harateristi polynomial
of A is the moni polynomial

PA(X) := det(X id−A) ∈ K[X ],

and theminimal polynomial mA(X) is the unique moni divisor of lowest degree of

PA(X) in K[X ] suh thatmA(A) = 0. (Note, by the theorem of Cayley-Hamilton,

one has PA(A) = 0.)
If two matries are onjugated, then they have the same harateristi resp.

minimal polynomials.

λ ∈ K is alled root of A if λ is a root of the harateristi polynomial,

onsidered as polynomial in K[X ], where K denotes the algebrai losure of K.
The next proposition follows diretly from [49, Corollaries XIV.2.2, XIV.2.3℄.

Proposition B.1. Let n ∈ N+. If A ∈ M(n, n;C) and B ∈ M(n, n;Q) are

onjugated via an element of GL(n,C), then holds PA(X) = PB(X) ∈ Q[X ],
mA(X) = mB(X) ∈ Q[X ] and mA(X) divides PA(X) in Q[X ]. �

Proposition B.2. If P (X) ∈ Z[X ], m(X) ∈ Q[X ] are moni polynomials and

m(X) divides P (X) in Q[X ], then holds m(X) ∈ Z[X ].

Proof. Let P (X), m(X) be as in the proposition and f(X) ∈ Q[X ] non-
onstant with P (X) = f(X)m(X). There exist k, l ∈ Z \ {0} suh that

k f(X) =
∑

i

aiX
i, l m(X) =

∑

j

bjX
j ∈ Z[X ]

119
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are primitive. (An integer polynomial is alled primitive if its oe�ients are

relatively prime.) We have

kl P (X) = (
∑

i

aiX
i)(
∑

j

bjX
j)

and laim kl = ±1.
Otherwise, there is a prime p ∈ N that divides kl. Sine the oe�ients of

k f(X) resp. l m(X) are relatively prime, there are minimal i0, j0 ∈ N suh that

p does not divide ai0 resp. bj0.
The oe�ient of X i0+j0

of kl f(X)m(X) is

ai0bj0 + ai0−1bj0+1 + ai0+1bj0−1 + . . .

and p divides eah summand exept the �rst. But sine p | kl, p divides the whole
sum. This is a ontradition. �

Theorem B.3. Let n ∈ N+ and A ∈ M(n, n;C) be onjugated to an integer

matrix. Then holds PA(X), mA(X) ∈ Z[X ].

Proof. This follows from the preeding two propositions. �

Lemma B.4 ([40, Lemma 2.2℄). Let P (X) = X3 − kX2 + lX − 1 ∈ Z[X ].
Then P has a double root X0 ∈ R if and only if X0 = 1 or X0 = −1 for

whih P (X) = X3−3X2+3X−1 or P (X) = X3+X2−X−1 respetively. �

Proposition B.5 ([38, Proposition 5℄). Let λi ∈ R+ with λi+
1
λi

= mi ∈ N+ and

mi > 2 for i ∈ {1, 2}.
Then there exists no element in SL(3,Z) with roots λ1, λ2,

1
λ1λ2

. �

Proposition B.6. Let P (X) = X4 −mX3 + pX2 − nX + 1 ∈ Z[X ].
Then P has a root with multipliity > 1 if and only if the zero set of P

equals {1, 1, a, a−1}, {−1,−1, a, a−1}, {a, a−1, a, a−1} or {a,−a−1, a,−a−1} for

�xed a ∈ C.

Proof. The most part of the proof was done by Harshavardhan in the proof

of [38, Propositon 2℄.

We set S := m2 + n2
and T := mn and get the disriminant D of P (X) as

D = 16p4 − 4Sp3 + (T 2 − 80T − 128)p2 + 18S(T + 8)p (B.1)

+256− 192T + 48T 2 − 4T 3 − 27S2.

Note that P (X) has a root of multipliity > 1 if and only if D = 0. Solving

D = 0 for S, we see

S = − 2

27
p3 +

1

3
pT +

8

3
p± 2

27

√
(p2 − 3T + 12)3,
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and sine S and T are integers, there is q ∈ Z with

p2 − 3T + 12 = q2,

whih implies

S = 4p+
1

27
(p3 − 3pq2 ± 2q3) (B.2)

T =
1

3
(p2 − q2 + 12).

We �rst onsider the plus sign in equation (B.2). Then one has

(m+ n)2 = S + 2T =
1

27
(p+ 2q + 6)(p− q + 6)2,

(m− n)2 = S − 2T =
1

27
(p+ 2q − 6)(p− q − 6)2,

and this implies the existene of ki, li ∈ N, i = 1, 2, suh that

3k21 = (p+ 2q + 6)k22,

3l21 = (p+ 2q − 6)l22.

We shall show: |m| = |n|
[If l2 = 0, the laim is proved. Therefore, we an assume l2 6= 0.
Case 1: k2 = 0
Then holds k1 = 0 and this means S + 2T = 0, i.e. (m+ n)2 = 0, so we have

m = −n.
Case 2: k2 6= 0
We write k := k1

k2
and l := l1

l2
. Then holds

3k2 = p+ 2q + 6 ∈ Z,

3l2 = p+ 2q − 6 ∈ Z,

and 3(k2 − l2) = 12. Therefore, we have k2 − l2 = 4, so k2 = 4, l2 = 0, i.e. l1 = 0,
S − 2T = 0 and m = n. ℄

Now, onsider the minus sign in equation (B.2). Then one has

(m+ n)2 = S + 2T =
1

27
(p− 2q + 6)(p+ q + 6)2,

(m− n)2 = S − 2T =
1

27
(p− 2q − 6)(p+ q − 6)2,

and shows analogously as above |m| = |n|.
We have shown: If P (X) has a multiple root, then holds m = ±n.
If m = n, then one alulates the solutions of D = 0 in (B.1) as the following
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(i) p = −2 + 2m,

(ii) p = −2− 2m,

(iii) p = 2 + m2

4
,

and if m = −n, then the real solution of D = 0 in (B.1) is

(iv) p = −2 + m2

4
.

Moreover, a short omputation yields the zero set of P (X) in the ases (i) �

(iv) as {1, 1, a, a−1}, {−1,−1, a, a−1}, {a, a−1, a, a−1}, {a,−a−1, a,−a−1}, respe-
tively. �

Proposition B.7 ([1, Proposition 4.4.14℄). Let K be a �eld and

m(X) = Xn + an−1X
n−1 + . . .+ a1X

1 + a0 ∈ K[X ]

a moni polynomial. Then




0 0 . . . 0 0 −a0
1 0 . . . 0 0 −a1
0 1 . . . 0 0 −a2
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . 1 0 −an−2

0 0 . . . 0 1 −an−1




has minimal polynomial

m(X). �

If one is willing to onstrut an integer matrix with given harateristi and

minimal polynomial, one always an hose any matrix M whih has the desired

polynomials and try to �nd an invertible matrix T suh that T−1MT has integer

entries. Of ourse, this an be di�ult. In the ase of 4 × 4 - matries we have

the following easy onstrution.

Proposition B.8 ([38, Setion 2.3.1℄).

(i) Let integers m,n, p ∈ Z be given.

Choose m1, . . . , m4 ∈ Z suh that

∑4
i=1mi = m and set

a := −m2
1p+m3

1m2 +m3
1m3 +m3

1m4 +m1n− 1,

b := (−m2 −m1)p+m1m
2
2 +m1m2m3 +m1m2m4 +m2

2m3 +m2
2m4

+m2
1m2 +m2

1m3 +m2
1m4 + n,

c := m1m2 +m1m3 +m1m4 +m2m3 +m2m4 +m3m4 − p.

Then the matrix




m1 0 0 a
1 m2 0 b
0 1 m3 c
0 0 1 m4


 has X4 −mX3 + pX2 − nX + 1

as harateristi polynomial.
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(ii) Let m ∈ 2Z be an even integer. Then the matrix




m
2

0 −1 0
0 m

2
0 −1

1 0 0 0
0 1 0 0




has the harateristi polynomial (X2 − m
2
X + 1)2, and (X2 − m

2
X + 1) as

minimal polynomial. �
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Appendix C

Group Extensions

De�nition C.1. A group extension of a group Q by a group N is a short exat

sequene of groups {1} → N → G
π→ Q→ {1}.

If s : Q → G is a group homomorphism with π ◦ s = id, then s is alled

setion. In this ase, we say that the extension is split.

Proposition C.2. A group extension {1} → N → G
π→ F → {1} of a free group

F is split.

Proof. Let {xi}i the set of generators of F . Choose gi ∈ G suh that π(gi) = xi
and de�ne a setion s : F → G by s(xi) = gi. �

Lemma C.3. Let {1} → A
i→ G → Q

π→ {1} be an extension by an abelian

group A. Then

q.a := i−1(gq · i(a) · g−1
q ) with any gq ∈ π−1({q})

de�nes a natural Q-module struture on A. �

Lemma C.4. Let {1} → N
i→ G

π→ Q → {1} be a split group extension with

setion s : Q→ G. Then

µ : Q×N → N, µ((q, n)) = i−1(s(q) · i(n) · s(q)−1),

de�nes an ation of Q on N by group automorphisms.

If N is abelian, the ation oinides with the natural Q-module struture of

N . �

Reall the de�nition of the semidiret produt Q ⋉µ N as set Q × N with

group struture (q1, n1)(q2, n2) = (q1q2, µ(q
−1
2 , n1)n2).

Lemma C.5. Let N,Q be groups and µ : Q×N → N an ation by group auto-

morphisms.

Then {1} → N
i⋉→ Q ⋉µ N

π⋉→ Q → {1} is a split group extension, where

i⋉(n) = (n, eQ) and π⋉((q, n)) = q. �

125
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De�nition C.6. Let {1} → N → Gk → Q → {1}, k ∈ {1, 2}, be group exten-

sions. They are alled equivalent, if there is a group homomorphism ϕ : G1 → G2

suh that the following diagram ommutes:

{1} ✲ N ✲ G1
✲ Q ✲ {1}

{1} ✲ N

id

❄
✲ G2

❄
✲ Q

id

❄
✲ {1}

Note, by the 5-Lemma, ϕ is neessary an isomorphism.

Proposition C.7. Let {1} → N
i→ G

π→ Q → {1} be a split group extension

with setion s : Q→ G.
Then the extension is equivalent to the extension of N by Q whih is given by

the Lemmata C.4 and C.5.

Proof. De�ne ϕ : Q⋉µN → G by f(q, n) = s(q) · i(n). ϕ is a homomorphism

sine

ϕ((q1, n1)(q2, n2)) = ϕ
(
(q1q2, µ(q

−1
2 , n1)n2)

)
= s(q1q2) · i(µ(q−1

2 , n1)n2)

= s(q1q2) · i(µ(q−1
2 , n1)n2)

= s(q1) · s(q2) · s(q2)−1 · i(n1) · s(q2) · i(n2)

= ϕ((q1, s1)) · ϕ((q2, n2)).

Further, ϕ satis�es the ommutativity ondition of the last lemma

ϕ(i⋉(n, eQ)) = s(eQ) · i(n) = i(n),

π
(
ϕ((q, n))

)
= π(s(q) · i(n)) = π(s(q)) · π(i(n)) = q = π⋉((q, n)).

Therefore, the proposition follows. �

De�nition C.8. Let {0} → A
i→ Q⋉ A→ Q → {1} be a split extension by an

abelian group A. Two setions s1, s2 : Q→ Q⋉A are alled A-equivalent if and
only if there is an element a ∈ A suh that

s1(q) = i(a) · s2(q) · i(a)−1

for all q ∈ Q.

De�nition C.9. Let Q be a group and A a Q-module.

A 1-oyle of Q with oe�ients in A is a map f : Q→ A with

∀q1,q2∈Q f(q1q2) = f(q2) + q−1
2 .f(q1)
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The set Z1(Q,A) of 1-oyles is an abelian group with obvious group struture.

A 1-boundary of Q with oe�ients in A is a map

fa : Q −→ A, fa(q) = q−1.a− a with �xed a ∈ A.

The set B1(Q,A) of 1-boundaries forms a subgroup of Z1(G,A).
The group H1(G,A) := Z1(G,A)/B1(Q,A) is alled �rst ohomology group

of Q with oe�ients in A.

Theorem C.10 ([9, Propsition IV.2.3℄). Let {0} → A→ Q⋉ A → Q → {1} be

a split extension by an abelian group A. Consider A with its natural Q-module
struture.

Then the elements of H1(Q,A) are in 1 − 1 orrespondene with the set of

A-onjugay lasses of setions s : Q→ Q⋉ A via [f ] 7→ [s(q) :=
(
q, f(q)

)
]. �

De�nition C.11. Let Q be a group and A a Q-module.

A 2-oyle of Q with oe�ients in A is a map f : Q×Q→ A suh that for

all q1, q2, q3 ∈ Q

q−1
3 .f(q1, q2) + f(q1q2, q3) = f(q1, q2q3) + f(q2, q3)

holds. The set Z2(Q,A) of 2-oyles is an abelian group with obvious group

struture.

A 2-boundary of Q with oe�ients in A is a map

fh : Q×Q −→ A

(q1, q2) 7−→ q−1
2 .h(q1)− h(q1q2) + h(q2)

with a �xed map h : Q→ A.
The set B2(Q,A) of 2-boundaries forms a subgroup of Z2(G,A).
The group H2(G,A) := Z2(G,A)/B2(Q,A) is alled seond ohomology group

of Q with oe�ients in A.

Theorem C.12 ([9, Theorem IV.3.12℄). Let Q be a group and A a Q-module.
Then the elements of H2(Q,A) are in 1 − 1 orrespondene with the set of

equivalene lasses of extensions of Q by A via [f ] 7→ [Ef ]. Ef denotes the

extension

{0} −→ A
i−→ Gf

π−→ Q −→ {1},
where Gf := Q× A with group struture given by

(q1, a1)(q2, a2) = (q1q2, q
−1
2 .a1 + a2 + f(q1, q2)),

and inlusion i(a) = (eQ, a) as well as projetion π(q, a) = q. �
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