Vorkurs Mathematik

Übungsblatt 12

Aufgabe 1. Betrachten Sie ein konvexes Polygon in der Ebene. Dann sind die Diagonalen genau die Verbindungsstrecken zwischen nicht benachbarten Randpunkten. Zeigen Sie, daß für $n \geq 3$ die Anzahl der Diagonalen d(n) gegeben ist durch

$$d(n) = \frac{n(n-3)}{2}.$$

Aufgabe 2. Zeichnen Sie die konvexe Hülle der folgenden Punkte $p_1,\ldots,p_k\in\mathbb{R}^2$ bzw. \mathbb{R}^3

- (i) $p_1 = (0, 1),$
- (ii) $p_1 = (0,0), p_2 = (2,1),$
- (iii) $p_1 = (0,0), p_2 = (1,0), p_3 = (0,1), p_4 = (-1,0), p_5 = (0,-1),$
- (iv) $p_1 = (0,0,0), p_2 = (1,0,0), p_3 = (0,1,0), p_4 = (0,0,1).$

Aufgabe 3. Zeigen Sie, daß die konvexe Hülle $\mathrm{Konv}(p_1,\ldots,p_k)$ eine konvexe Menge ist.

Aufgabe 4. Sei $q \in \text{Konv}(p_1, \dots, p_k)$. Dann gilt

$$\operatorname{Konv}(p_1,\ldots,p_k) = \operatorname{Konv}(p_1,\ldots,p_k,q).$$