Vorkurs Mathematik

Übungsblatt 3

Definition. Seien M eine Menge und H eine einstellige Aussageform, deren Einsetzungsklasse Ω die Menge M umfaßt. Wir definieren drei neue Aussagen wie folgt:

(i)
$$\forall_{x \in M} H(x) : \iff \forall_x (x \in M \Rightarrow H(x))$$

(ii)
$$\exists_{x \in M} H(x) : \iff \exists_x (x \in M \land H(x))$$

(iii)
$$\exists !_{x \in M} H(x) :\iff \exists_{x \in M} (H(x) \land \forall_{y \in M} (H(y) \Rightarrow x = y))$$

Aufgabe 1. Seien M eine Menge und H eine einstellige Aussageform mit Einsetzungsklasse M. Negieren Sie die Aussage $\exists !_{x \in M} H(x)$.

Aufgabe 2. Sei M eine Menge. Zeige:

- (i) $\emptyset \subset M$.
- (ii) Gilt $M \subset \emptyset$, so ist M die leere Menge.

Aufgabe 3. Untersuche in jedem der folgenden Fälle, ob

$$A \subset B$$
, $B \subset A$, $A = B$, $A \in B$

gilt:

(i)
$$A = \{\emptyset\}, B = \{\{\emptyset\}\}.$$

(ii)
$$A = \{\emptyset, \{\emptyset\}\}, B = \{\emptyset, \{\emptyset, \{\emptyset\}\}\}\}.$$

(iii)
$$A = \{ \{\emptyset\}, \{\emptyset, \emptyset\} \}, B = \{ \{\emptyset\} \}.$$

Aufgabe 4. Es seien

$$A \ := \ \{x \in \mathbb{R} \mid 0 < x \leq 2\},$$

$$B := \{x \in \mathbb{R} \mid 0 \le x < 2\},\$$

$$C := \{ x \in \mathbb{R} \mid -1 < x \le 1 \}.$$

Bestimme die folgenden Mengen:

- (i) $A \cup B$, $A \cup C$, $A \cup B \cup C$,
- (ii) $A \cap B$, $A \cap C$, $A \cap B \cap C$,
- (iii) $A \setminus B$, $A \setminus C$, $C \setminus A$,
- (iv) $\mathbb{R} \setminus A$ und $\mathbb{R} \setminus C$.

Aufgabe 5. Seien M, N Mengen. Weise nach, daß die folgenden Aussagen paarweise zueinander äquivalent sind (d.h. jede ist zu jeder der anderen äquivalent).

- (i) $M \subset N$
- (ii) $M \cup N = N$
- (iii) $M \cap N = M$
- (iv) $M \setminus N = \emptyset$

Tip: Man zeige die Implikationen "(i) \Rightarrow (ii)", "(ii) \Rightarrow (iii)", "(iii) \Rightarrow (iv)" und "(iv) \Rightarrow (i)". Warum genügt das?